FrontPage

¸À¸ì¶µ°é³Ø±é½¬2015¡Ê¿å£²¡¡Á°¡¦¸å´ü¡Ë

¶µ¼¼

  • £´£²£°¶µ¼¼

¹ÖµÁÂêÌÜ¡ÊÏÂʸ¡Ë

  • ¥³¡¼¥Ñ¥¹¤òÍѤ¤¤¿³Ø½¬¼Ô±Ñ¸ìʬÀϤȶµºàºîÀ®¤Ø¤Î±þÍÑ (J)

¼ø¶È¤ÎÌÜɸ

  • ¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁÃŪ³µÇ°¤Î½¬ÆÀ¤È¤½¤Î±þÍÑʬÌî¤È¤·¤Æ¤Î CEFR ½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤Î¥³¡¼¥Ñ¥¹Ê¬ÀϤγµÍפòÃΤ롣

¼ø¶È¤Î³µÍ×

  • ¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁóµÇ°¤ò¥Æ¥­¥¹¥È¤ò¹ØÆÉ¤·¤Ê¤¬¤é³Ø¤Ö¤ÈƱ»þ¤Ë¡¤¥³¡¼¥Ñ¥¹½èÍý¤Î´ðÁäò½¬ÆÀ¤¹¤ë¡£¡¡

¼ø¶È·×²è¡Ê½©¡Ë

  • ¥Æ¥­¥¹¥È¤òÍѤ¤¤¿ÀìÌçÃμ±¤È¼ÂºÝ¤Î¸¦µæÎã¤ÎÍý²ò
  • Sketch Engine ¤òÍѤ¤¤¿³Ø½¬¼Ô¥Ç¡¼¥¿¤Î¸¡º÷µ»Ë¡¤Î½¬ÆÀ
    • ¥¼¥ßÀ¸¤Ç Sketch Engine ¤Î¥Þ¥Ë¥å¥¢¥ë¤òºîÀ®
  • CEFR ¤ÎÍý²ò¤Ë´Ø¤·¤Æ¤Ï¥Ï¥ó¥É¥Ö¥Ã¥¯°Ê³°¤Ë CEFR ´ØÏ¢¤Î»ñÎÁ¤òÆÉ¤à
  • ¥Ï¥ó¥É¥Ö¥Ã¥¯¤ò10-11·î¤ÇÆÉÇË
  • CEFR´ØÏ¢¤Î»ñÎÁ¤òÆÉ¤ó¤Çºî¶È³«»Ï¡Ê12·î¡Á¡Ë
  • Ãæ´ÖÊó¹ð¡Ê1·î»Ï¤á¡Ë
    • Æ»¸¶¡§µÕÀܤÎÀܳ»ì
      • But, however: ¥Ñ¥é¥°¥é¥Õñ°Ì¡©
      • ¤É¤¦¤ä¤Ã¤Æ¥Ñ¥é¥°¥é¥Õñ°Ì¤ÎµÕÀܤòʬÀϤ¹¤ë¤Î¤«¡©
      • µÕÀÜ¡§but ¤ÏʸƬ¤Ç¤Ï»È¤ï¤Ê¤¤¡¡¢ª¡¡academic writing
    • »³ºê¡§NICT JLE ¤Î n-gram ¤Ë¤è¤ëÀܳ»ì¤Î»ÈÍѤˤĤ¤¤Æ
      • NS vs NNS: n-gram Èæ³Ó
      • and, but ¤ò´Þ¤à n-gram ¤¬NNS¤Ë¾¯¤Ê¤¤
  • ȯɽ²ñ¡Ê1·î²¼½Ü or £²·î½é½Ü¡Ë

¼ø¶È¤Î·×²è¡Ê½Õ¡Ë

  • ¥Æ¥­¥¹¥È¤òÍѤ¤¤¿ÀìÌçÃ챤ÎÍý²ò¤È Sketch Engine ¤È¤¤¤¦¥³¡¼¥Ñ¥¹¸¡º÷¥·¥¹¥Æ¥à¤Î»ÈÍÑË¡¤Ë½¬½Ï¤¹¤ë¡£
  • Âè1²ó¡¡¥¤¥ó¥È¥í¥À¥¯¥·¥ç¥ó¡§¥³¡¼¥Ñ¥¹¤È¸À¸ì¶µºàºîÀ®
  • Âè2²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ±¡Ë¡§¥³¡¼¥Ñ¥¹¤ÎÄêµÁ¤ÈÎò»ËŪÊÑÁ«¡¡(CBLS Unit A1)
  • Âè3²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ²¡Ë¡§ÂåɽÀ­¡¦¥Ð¥é¥ó¥¹¡¦É¸ËÜ (CBLS Unit A2 + B1.2 & B1.3¡¡ + Brown Corpus ¤Ç¤Î AntConc? ¤Î¼Â½¬)
  • Âè4²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ³¡Ë¡§Markup & annotation (CBLS Unit A3¡¡& A4)
  • Âè5²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ´¡Ë¡§¥³¡¼¥Ñ¥¹¤È±þÍÑʬÌî (CBLS Unit A10)
  • 10.2-10.3¡§ÀîËÜ
  • 10.4-10.5¡§°ÂÂð
  • 10.6-10.7¡§Èøºê
  • 10.8¡§ÃæÅç
  • Âè6²ó¡¡A10 ¤Î»Ä¤ê¡Ü¡¡AntConc? ¤ò»È¤Ã¤¿¼Â½¬
  • 10.9-10.10¡§×¢ÃÓ
  • 10.11-10.12¡§»³ºê
  • 10.13-10.15¡§¥í¡¼¥ì¥ó¥¹
  • Âè7²ó¡¡AntConc? ¤ò»È¤Ã¤¿¼Â½¬¤Î³¤­
  • Àµµ¬É½¸½¤òÍѤ¤¤¿¤è¤êÊ£»¨¤Ê¸¡º÷
  • Cluster/ n-gram/ keyword analysis
  • Tagging ¥Ç¡¼¥¿¤Î½èÍý
  • Âè8²ó(6/3)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣµ¡Ë¡§¥³¡¼¥Ñ¥¹¤È¼­½ñ (CBLS Unit C1) ôÅö¡§×¢ÃÓ¤µ¤ó
  • Âè9²ó(6/10)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ¶¡Ë¡§¥³¡¼¥Ñ¥¹¤Èʸˡ¸¦µæ (CBLS Unit C2) ¡¡Ã´Åö¡§»³ºê¤µ¤ó
    • ȯɽ»ñÎÁ¡Ê»³ºê¡Ë
    • Antconc¡§cluster/keyword analysis
    • 6/17¡¡¶µ°é¼Â½¬»ë»¡¤¬Æþ¤êµÙ¹Ö¤Ë¤Ê¤ê¤Þ¤¹
    • 6/24 ¥¢¥¸¥¢¼­½ñ³Ø²ñ¡Ê¹á¹Á¡Ë¤Ë½ÐÄ¥¤Î¤¿¤áµÙ¹Ö¤Ë¤Ê¤ê¤Þ¤¹
  • Âè10²ó(7/1)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ·¡Ë¡§¥³¡¼¥Ñ¥¹¤È¸À¸ì½¬ÆÀ¸¦µæ (CBLS Unit C3)¡¡Ã´Åö¡§Èøºê¤µ¤ó
  • Âè11²ó(7/8)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ¸¡Ë¡§¥³¡¼¥Ñ¥¹¤ÈËÝÌõ¸¦µæ (CBLS Unit C6)¡¡Ã´Åö¡§¥í¡¼¥ì¥ó¥¹¤¯¤ó
°Ê²¼¤ÎÆâÍÆ¤Ï²ÆµÙ¤ßÃæ¤Î¥¼¥ß¹ç½É¤Ç°·¤¤¤Þ¤¹
Âè12²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê1¡Ë¡§English Profile ¤Î³Ø½¬¼Ô¥Ç¡¼¥¿Ê¬ÀÏ ¤Î³µÍ×
Âè13²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê2¡Ë¡§¥¨¥é¡¼¥¿¥°ÉÕÍ¿¤Î¼ÂºÝ
Âè14²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê3¡Ë¡§´ð½àÆÃÀ­Ãê½Ð¤Î¸¦µæ³µ´Ñ
Âè15²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê4¡Ë¡§³Ø½¬¼Ô¥³¡¼¥Ñ¥¹¤Î¼ïÎà¤È´ðÁÃŪ¤Ê½èÍý ±é½¬

¥Æ¥­¥¹¥È

ISBN0415286239
½ñ̾Corpus-based language studies : an advanced resource book
Ãø¼Ô̾McEnery?, T., Xiao, R., & Tono, Y.
½ÐÈǼÒRoutledge
½ÐÈÇǯ2006

PDF

¥Æ¥­¥¹¥È¤¬¤¯¤ë¤Þ¤Ç°Ê²¼¤ò¥À¥¦¥ó¥í¡¼¥É¤·¤ÆÍøÍѤ·¤Æ²¼¤µ¤¤¡§

READING:

Discussion questions

  • Chapter 1:
  • What is a corpus? Discuss some common features by comparing different definitions.
  • Why use computers to study language? What is your intuitive answer to this? What other reasons did you find in the text?
  • Discuss the use of corpora and the use of intuition. Are they mutually exclusive?
  • Is corpus linguistics a methodology or a theory?
  • How different are corpus-based vs. corpus-driven approaches? Can you think of any concrete examples?
  • Chapter 2:
  • 2.2
  • What is "representativeness"?
  • What does it mean when Biber says "Representativeness refers to the extent to which a sample includes the full range of variabilityin a population." (p.13)
  • What are "internal" and "external" criteria used to select texts for a corpus? (p.14)
  • The authors say that it is problematical to use internal criteria as the primary parameters for the selection of corpus data. Why? (p.14)
  • Explain what Biber calls a 'cyclical fashion'? (p.14)
  • Static sample corpora, if resampled, may also allow the study of language change over time. (p.15) How?
  • 2.3
  • What are "general" vs. "specialized" corpora? How is representativeness achieved in these corpora?
  • 2.4
  • How is the acceptable balance of a corpus determined?
  • Any claim of corpus balance is largely an act of faith. (p.16) What does this mean?
  • Explain the design of the British National Corpus, using the terms 'domain', 'time', 'medium', 'demographic' and 'context-governed'. How is it balanced?
  • Elaborate on the following statements:
    • Representativeness links to research questions. (p.18)
    • Representativeness is a fluid concept. (p.18)
  • 2.5
  • Explain the notion of sampling using the following terms:
    • sample/ population/ sampling unit/ sampling frame
  • What is the difference between 'simple random sampling' and 'stratified random sampling'?
  • Describe pros and cons of 'full text samples'
  • Chapter 3
  • 3.2
    • What are the three reasons for corpus mark-up? Discuss each case with complete examples.
  • 3.3
    • Here, you should at least familiarize yourself with the following schemes:
      • COCOA (dated)
      • TEI (current standard) << website >>
           --> header vs. body
        Q1. What does the TEI header specify?
        Q2. What kind of information is in the TEI body?
  • Corpus Encoding Standard (CES) & XCES << website >>
  • Chapter 4
  • What is corpus annotation and how is it different from corpus mark-up?
  • 4.2
    • What are the four advantages for corpus annotation?
    • What are some of the criticisms against corpus annotation? What is the authors' response?
  • 4.3
  • Look at concrete examples for each type of annotation:
  • Problem-oriented annotation
  • Chapter 5-9
  • Make a summary on your own
  • Chapter 10
  • Summarize the use of corpus data in the following areas briefly
  • The major areas of linguistics
    • lexicographic and lexical studies (10.2)
    • grammatical studies (10.3)
    • register variation and genre analysis (10.4)
    • dialect distinction and language variety (10.5)
    • contrastive and translation studies (10.6)
    • diachronic study and language change (10.7)
    • language learning and teaching (10.8)
  • Other areas which have started to use corpus data
    • Semantics (10.9)
    • Pragmatics (10.10)
    • Sociolinguistics (10.11)
    • Discourse analysis (10.12)
    • Stylistics and literary studies (10.13)
    • Forensic linguistics (10.14)
  • What is the limitation of corpus data? (10.15)

Sketch Engine CQL memo

  • help + bare infinitives
    • Brown Family ¤Î CLAWS7 tagset ¤Î¸¡º÷¼°¡§
      • [lemma="help"] [tag="VVI|VV0"]
  • help + to + V
    • [lemma="help"] [lemma="to"] [tag="VVI"]
  • make + a + adj(optional) + NOUN
    • [lemma="make"] [word="a"] [tag="JJ"]? [tag="NN1"]

¥«¥¤2¾è¸¡Äê¤Ê¤É

  • js-STAR
    • web ¤Ç·×»»¤Ç¤­¤ëÅý·×

Sample data for error tagging

TUTORIALS: Corpus query tools

  • Sketch Engine ¥³¡¼¥Ñ¥¹¡¦¥Ý¡¼¥¿¥ë¡¦¥µ¥¤¥È
  • ³ØÆâ¤Ç¤Ï IP auth ¤ò¥¯¥ê¥Ã¥¯¤¹¤ì¤Ð¡¤¤É¤³¤«¤é¤Ç¤â¥¢¥¯¥»¥¹¤Ç¤­¤Þ¤¹
  • Antconc (for Windows & Mac) ÈÆÍÑ¥³¥ó¥³¡¼¥À¥ó¥µ¡¼
  • Casualconc (for Mac) ÈÆÍÑ¥³¥ó¥³¡¼¥À¥ó¥µ¡¼
  • Tagant¡¡TreeTagger ¤ò´Êñ¤Ë»È¤¨¤ë¤è¤¦¤Ë¤·¤¿Éʻ쥿¥°ÉÕÍ¿¥½¥Õ¥È

Concordance »ñÎÁ


¥È¥Ã¥×   ÊÔ½¸ Åà·ë º¹Ê¬ ¥Ð¥Ã¥¯¥¢¥Ã¥× źÉÕ Ê£À½ ̾Á°Êѹ¹ ¥ê¥í¡¼¥É   ¿·µ¬ °ìÍ÷ ñ¸ì¸¡º÷ ºÇ½ª¹¹¿·   ¥Ø¥ë¥×   ºÇ½ª¹¹¿·¤ÎRSS
Last-modified: 2016-01-20 (¿å) 11:00:34 (1863d)