FrontPage
¸À¸ì¶µ°é³Ø±é½¬2015¡Ê¿å£²¡¡Á°¡¦¸å´ü¡Ë †
¶µ¼¼ †
¹ÖµÁÂêÌÜ¡ÊÏÂʸ¡Ë †
- ¥³¡¼¥Ñ¥¹¤òÍѤ¤¤¿³Ø½¬¼Ô±Ñ¸ìʬÀϤȶµºàºîÀ®¤Ø¤Î±þÍÑ (J)
¼ø¶È¤ÎÌÜɸ †
- ¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁÃŪ³µÇ°¤Î½¬ÆÀ¤È¤½¤Î±þÍÑʬÌî¤È¤·¤Æ¤Î CEFR ½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤Î¥³¡¼¥Ñ¥¹Ê¬ÀϤγµÍפòÃΤ롣
¼ø¶È¤Î³µÍ× †
- ¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁóµÇ°¤ò¥Æ¥¥¹¥È¤ò¹ØÆÉ¤·¤Ê¤¬¤é³Ø¤Ö¤ÈƱ»þ¤Ë¡¤¥³¡¼¥Ñ¥¹½èÍý¤Î´ðÁäò½¬ÆÀ¤¹¤ë¡£¡¡
¼ø¶È·×²è¡Ê½©¡Ë †
- ¥Æ¥¥¹¥È¤òÍѤ¤¤¿ÀìÌçÃμ±¤È¼ÂºÝ¤Î¸¦µæÎã¤ÎÍý²ò
- Sketch Engine ¤òÍѤ¤¤¿³Ø½¬¼Ô¥Ç¡¼¥¿¤Î¸¡º÷µ»Ë¡¤Î½¬ÆÀ
- ¥¼¥ßÀ¸¤Ç Sketch Engine ¤Î¥Þ¥Ë¥å¥¢¥ë¤òºîÀ®
- CEFR ¤ÎÍý²ò¤Ë´Ø¤·¤Æ¤Ï¥Ï¥ó¥É¥Ö¥Ã¥¯°Ê³°¤Ë CEFR ´ØÏ¢¤Î»ñÎÁ¤òÆÉ¤à
- ¥Ï¥ó¥É¥Ö¥Ã¥¯¤ò10-11·î¤ÇÆÉÇË
- CEFR´ØÏ¢¤Î»ñÎÁ¤òÆÉ¤ó¤Çºî¶È³«»Ï¡Ê12·î¡Á¡Ë
- Ãæ´ÖÊó¹ð¡Ê1·î»Ï¤á¡Ë
- Æ»¸¶¡§µÕÀܤÎÀܳ»ì
- But, however: ¥Ñ¥é¥°¥é¥Õñ°Ì¡©
- ¤É¤¦¤ä¤Ã¤Æ¥Ñ¥é¥°¥é¥Õñ°Ì¤ÎµÕÀܤòʬÀϤ¹¤ë¤Î¤«¡©
- µÕÀÜ¡§but ¤ÏʸƬ¤Ç¤Ï»È¤ï¤Ê¤¤¡¡¢ª¡¡academic writing
- »³ºê¡§NICT JLE ¤Î n-gram ¤Ë¤è¤ëÀܳ»ì¤Î»ÈÍѤˤĤ¤¤Æ
- NS vs NNS: n-gram Èæ³Ó
- and, but ¤ò´Þ¤à n-gram ¤¬NNS¤Ë¾¯¤Ê¤¤
- ȯɽ²ñ¡Ê1·î²¼½Ü or £²·î½é½Ü¡Ë
¼ø¶È¤Î·×²è¡Ê½Õ¡Ë †
- ¥Æ¥¥¹¥È¤òÍѤ¤¤¿ÀìÌçÃ챤ÎÍý²ò¤È Sketch Engine ¤È¤¤¤¦¥³¡¼¥Ñ¥¹¸¡º÷¥·¥¹¥Æ¥à¤Î»ÈÍÑË¡¤Ë½¬½Ï¤¹¤ë¡£
- Âè1²ó¡¡¥¤¥ó¥È¥í¥À¥¯¥·¥ç¥ó¡§¥³¡¼¥Ñ¥¹¤È¸À¸ì¶µºàºîÀ®
- Âè2²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ±¡Ë¡§¥³¡¼¥Ñ¥¹¤ÎÄêµÁ¤ÈÎò»ËŪÊÑÁ«¡¡(CBLS Unit A1)
- Âè3²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ²¡Ë¡§ÂåɽÀ¡¦¥Ð¥é¥ó¥¹¡¦É¸ËÜ (CBLS Unit A2 + B1.2 & B1.3¡¡ + Brown Corpus ¤Ç¤Î AntConc? ¤Î¼Â½¬)
- Âè4²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ³¡Ë¡§Markup & annotation (CBLS Unit A3¡¡& A4)
- Âè5²ó¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ´¡Ë¡§¥³¡¼¥Ñ¥¹¤È±þÍÑʬÌî (CBLS Unit A10)
- 10.2-10.3¡§ÀîËÜ
- 10.4-10.5¡§°ÂÂð
- 10.6-10.7¡§Èøºê
- 10.8¡§ÃæÅç
- Âè6²ó¡¡A10 ¤Î»Ä¤ê¡Ü¡¡AntConc? ¤ò»È¤Ã¤¿¼Â½¬
- 10.9-10.10¡§×¢ÃÓ
- 10.11-10.12¡§»³ºê
- 10.13-10.15¡§¥í¡¼¥ì¥ó¥¹
- Âè7²ó¡¡AntConc? ¤ò»È¤Ã¤¿¼Â½¬¤Î³¤
- Àµµ¬É½¸½¤òÍѤ¤¤¿¤è¤êÊ£»¨¤Ê¸¡º÷
- Cluster/ n-gram/ keyword analysis
- Tagging ¥Ç¡¼¥¿¤Î½èÍý
- Âè8²ó(6/3)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣµ¡Ë¡§¥³¡¼¥Ñ¥¹¤È¼½ñ (CBLS Unit C1) ôÅö¡§×¢ÃÓ¤µ¤ó
- Âè9²ó(6/10)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ¶¡Ë¡§¥³¡¼¥Ñ¥¹¤Èʸˡ¸¦µæ (CBLS Unit C2) ¡¡Ã´Åö¡§»³ºê¤µ¤ó
- ȯɽ»ñÎÁ¡Ê»³ºê¡Ë
- Antconc¡§cluster/keyword analysis
- 6/17¡¡¶µ°é¼Â½¬»ë»¡¤¬Æþ¤êµÙ¹Ö¤Ë¤Ê¤ê¤Þ¤¹
- 6/24 ¥¢¥¸¥¢¼½ñ³Ø²ñ¡Ê¹á¹Á¡Ë¤Ë½ÐÄ¥¤Î¤¿¤áµÙ¹Ö¤Ë¤Ê¤ê¤Þ¤¹
- Âè10²ó(7/1)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ·¡Ë¡§¥³¡¼¥Ñ¥¹¤È¸À¸ì½¬ÆÀ¸¦µæ (CBLS Unit C3)¡¡Ã´Åö¡§Èøºê¤µ¤ó
- Âè11²ó(7/8)¡¡¥³¡¼¥Ñ¥¹¸À¸ì³Ø¤Î´ðÁáʣ¸¡Ë¡§¥³¡¼¥Ñ¥¹¤ÈËÝÌõ¸¦µæ (CBLS Unit C6)¡¡Ã´Åö¡§¥í¡¼¥ì¥ó¥¹¤¯¤ó
°Ê²¼¤ÎÆâÍÆ¤Ï²ÆµÙ¤ßÃæ¤Î¥¼¥ß¹ç½É¤Ç°·¤¤¤Þ¤¹
Âè12²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê1¡Ë¡§English Profile ¤Î³Ø½¬¼Ô¥Ç¡¼¥¿Ê¬ÀÏ ¤Î³µÍ×
Âè13²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê2¡Ë¡§¥¨¥é¡¼¥¿¥°ÉÕÍ¿¤Î¼ÂºÝ
Âè14²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê3¡Ë¡§´ð½àÆÃÀÃê½Ð¤Î¸¦µæ³µ´Ñ
Âè15²ó¡¡CEFR½àµò¤Î³Ø½¬¼Ô¥Ç¡¼¥¿¤ÎʬÀÏ¡Ê4¡Ë¡§³Ø½¬¼Ô¥³¡¼¥Ñ¥¹¤Î¼ïÎà¤È´ðÁÃŪ¤Ê½èÍý ±é½¬
¥Æ¥¥¹¥È †
ISBN | 0415286239 |
½ñ̾ | Corpus-based language studies : an advanced resource book |
Ãø¼Ô̾ | McEnery?, T., Xiao, R., & Tono, Y. |
½ÐÈÇ¼Ò | Routledge |
½ÐÈÇǯ | 2006 |
PDF †
¥Æ¥¥¹¥È¤¬¤¯¤ë¤Þ¤Ç°Ê²¼¤ò¥À¥¦¥ó¥í¡¼¥É¤·¤ÆÍøÍѤ·¤Æ²¼¤µ¤¤¡§
READING: †
Discussion questions †
- What is a corpus? Discuss some common features by comparing different definitions.
- Why use computers to study language? What is your intuitive answer to this? What other reasons did you find in the text?
- Discuss the use of corpora and the use of intuition. Are they mutually exclusive?
- Is corpus linguistics a methodology or a theory?
- How different are corpus-based vs. corpus-driven approaches? Can you think of any concrete examples?
- What is "representativeness"?
- What does it mean when Biber says "Representativeness refers to the extent to which a sample includes the full range of variabilityin a population." (p.13)
- What are "internal" and "external" criteria used to select texts for a corpus? (p.14)
- The authors say that it is problematical to use internal criteria as the primary parameters for the selection of corpus data. Why? (p.14)
- Explain what Biber calls a 'cyclical fashion'? (p.14)
- Static sample corpora, if resampled, may also allow the study of language change over time. (p.15) How?
- What are "general" vs. "specialized" corpora? How is representativeness achieved in these corpora?
- How is the acceptable balance of a corpus determined?
- Any claim of corpus balance is largely an act of faith. (p.16) What does this mean?
- Explain the design of the British National Corpus, using the terms 'domain', 'time', 'medium', 'demographic' and 'context-governed'. How is it balanced?
- Elaborate on the following statements:
- Representativeness links to research questions. (p.18)
- Representativeness is a fluid concept. (p.18)
- Explain the notion of sampling using the following terms:
- sample/ population/ sampling unit/ sampling frame
- What is the difference between 'simple random sampling' and 'stratified random sampling'?
- Describe pros and cons of 'full text samples'
- 3.2
- What are the three reasons for corpus mark-up? Discuss each case with complete examples.
- 3.3
- Here, you should at least familiarize yourself with the following schemes:
- Corpus Encoding Standard (CES) & XCES << website >>
- 3.4
- Please read the following webpage for your reference:
- What is corpus annotation and how is it different from corpus mark-up?
- 4.2
- What are the four advantages for corpus annotation?
- What are some of the criticisms against corpus annotation? What is the authors' response?
- 4.3
- Look at concrete examples for each type of annotation:
- Problem-oriented annotation
- Make a summary on your own
- Summarize the use of corpus data in the following areas briefly
- The major areas of linguistics
- lexicographic and lexical studies (10.2)
- grammatical studies (10.3)
- register variation and genre analysis (10.4)
- dialect distinction and language variety (10.5)
- contrastive and translation studies (10.6)
- diachronic study and language change (10.7)
- language learning and teaching (10.8)
- Other areas which have started to use corpus data
- Semantics (10.9)
- Pragmatics (10.10)
- Sociolinguistics (10.11)
- Discourse analysis (10.12)
- Stylistics and literary studies (10.13)
- Forensic linguistics (10.14)
- What is the limitation of corpus data? (10.15)
Sketch Engine CQL memo †
- help + bare infinitives
- Brown Family ¤Î CLAWS7 tagset ¤Î¸¡º÷¼°¡§
- [lemma="help"] [tag="VVI|VV0"]
- help + to + V
- [lemma="help"] [lemma="to"] [tag="VVI"]
- make + a + adj(optional) + NOUN
- [lemma="make"] [word="a"] [tag="JJ"]? [tag="NN1"]
¥«¥¤2¾è¸¡Äê¤Ê¤É †
Sample data for error tagging †
TUTORIALS: Corpus query tools †
- ³ØÆâ¤Ç¤Ï IP auth ¤ò¥¯¥ê¥Ã¥¯¤¹¤ì¤Ð¡¤¤É¤³¤«¤é¤Ç¤â¥¢¥¯¥»¥¹¤Ç¤¤Þ¤¹
- Antconc (for Windows & Mac) ÈÆÍÑ¥³¥ó¥³¡¼¥À¥ó¥µ¡¼
- Casualconc (for Mac) ÈÆÍÑ¥³¥ó¥³¡¼¥À¥ó¥µ¡¼
- Tagant¡¡TreeTagger ¤ò´Êñ¤Ë»È¤¨¤ë¤è¤¦¤Ë¤·¤¿Éʻ쥿¥°ÉÕÍ¿¥½¥Õ¥È
Concordance »ñÎÁ †