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1. Introduction

Corpus linguistics has become one of the major areas of research in linguistics and applied linguistics.
While there is a mixed view about the status of corpus linguistics as an independent discipline of
linguistics or just a methodology (cf. McEnery, Xiao and Tono 2003), there is a growing awareness that
the use of corpora will shed light on various aspects of language properties and their use. In this paper, I
will argue that whilst language is rule-governed, those rules are not simply categorical in nature, but show
various probabilistic nature. Frequency information obtained from corpora will be useful in theorizing
human lﬁnguage faculty, integrating probabilistic information into theories of linguistic competence and
performance. I will discuss how probabilistic views of language, based on the Bayesian network, will
help redefine a theory of second language acquisition.

In recent years, a strong consensus has emerged that human cognition is based on probabilistic
processing (cf. Bod, Hay and Jannedy 2003). The probabilistic approach is promising in modeling brain
functioning and its ability to accurately model phenomena “from psychophysics and neurophysiology”
(ibid: 2). Bod et al also claim that the language faculty itself displays probabilistic properties. I argue that
this probabilistic view holds for various phenomena in both L1 and L2 acquisition and could have a
significant impact on theory construction in first and second language acquisition. I will briefly outline

the nature of this evidence below.
1.1. Varistion

Zuraw (2003) provides evidence that language change can result from probabilistic inference on the part
of listeners, and that probabilistic reasoning could explain the miaintenance of lexical regularities over
historical time. Individual variations in SLA can also be explained by probabilistic factors such as how
often they are exposed to certain linguistic phenomena in particular educational settings. Variations in
input characteristics could be determined by such probabilistic factors as frequencies and order of

presentation of language items in a particular syllabus or materials such as textbooks or course modules.
1.2. Frequency

One striking clue to the importance of probabilities in language comes from the wealth of frequency
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effects that pervade language representation, processing, and language change (Bod, Hay, and Jannedy
2003:3). This is true for SLA. Frequent words are recognized faster than infrequent words (Jurafsky
1996). Frequent words in input are also more likely to be used by learners than infrequent words (Tono
2002). Frequency affects language processes, so it must be represented somewhere. More and more
scholars come to believe that probabilistic information is stored in human brains for helping automatic

processing of various kinds.
1.3. Gradience

Many phenomena in language may appear categorical at first glance, but upon closer inspection show
clear signs of gradience. Manning (2003) shows that even verb subcategorization patterns should better be
treated in terms of gradients, as there are numerous unclear cases which lie between clear arguments and
clear adjuncts (ibid: 302). Rather than maintaining a categorical argument/adjunct distinction and having
to make in/out decisions about such cases, we might instead represent subcategorization information as a
probability distribution over argument frames, with different verbal dependents expected to occur with a
verb with a certain probability (ibid: 303). This type of analysis is readily applicable to cases in L2
acquisition. A strong claim can be made regarding the gradient nature of language in terms of a
probability distribution over linguistic phenomena based on the comparison between native speaker’s

corpora and learner corpora.
1.4. Acquisition

Bod, Hay, and Jannedy (2003) claim that “adding probabilities to linguistics makes the acquisition easier,
not harder” (ibid: 6). Generalizations based on statistical inference become increasingly robust as sample
size increases. This holds for both positive and negative generalizations: as the range and quantity of data
increase, statistical models are able to acquire negative evidence with increasing certainty. In formal L2
classroom settings, it is also very likely that learners will be exposed to negative evidence as well.
Instructed knowledge of this type could serve to form a part of probabilistic information in a learner’s
mind besides actual exposure to primary data, which facilitates the processing of certain linguistic

structures more readily than others.
1.5. What does the evidence show?

The evidence above seems to indicate that a probabilistic approach will be very promising in theory-
construction in not only linguistics but also second language acquisition. It could be argued that corpus
linguistics should provide a very strong empirical basis for this approach. By analyzing various aspects of

leamner language quantitatively and at the same time integrating the results of the observations into the
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probabilistic model of learning, we could possibly produce a better picture of L2 learning and acquisition.
In the next section, I will further explore this possibility and introduce one of the most promising statistical
approaches, the Bayesian statistics and network modeling as an underlying principle of language acquisition.

2. Integrating probabilities into SLA theory

One of the strengths of corpus linguistics is its data-driven nature. The findings are supported by a large
amount of attested language use data. This feature has been increasingly highlighted as more and more
electronic texts become available online. This dramatic increase in the size of available corpus data has
also changed the way that people use statistics. Traditional mathematical statistics have been replaced by
computational statistics, involving robust machine-learning algorithms and probabilistic inferencing on
large-scale data. This shift toward more data-centered approaches should also be. applied in the
formulation of SLA theory by using learner corpora. By working on large amounts of learner data using
probabilistic methods, it is possible to create a totally new type of learning model. In the following
sections, I will introduce Bayesian network modeling as the basis of such probability theories and discuss

how to view the acquisition theory from Bayesian viewpoints.
2.1. Bayes’ theorem

Let me briefly describe Bayes® theorem and how it is useful for theory construction in SLA.2 Bayes’
theorem is a probability rule, currently widely used in the information sciences to cope with uncertainty
from known facts or experience. It serves as a base theory for various problem solving algorithms as well
as data mining methods. Baye's theorem is a rule in probability theory that relates to conditional
probabilities. Conditional probability is the probability of the occurrence of an event A, given the
occurrence of some other event B. Conditional probability is written P(A|B), and is read "the probability
of A, given B". Bayes’ theorem relates the conditional and marginal probabilities of stochastic events A

and B and is formulated as in (1):

0 P4 5y = ZELD

Each term in Bayes' theorem has a conventional name as in (2):

(2) a. P(4) is the prior probability or marginal probability of A. It is “prior” in the sense
that it does not take into account any information about B.
b. P(A|B) is the conditional probability of A, given B. It is also called the posterior pro

bability because it is derived from or depends upon the specified value of B.
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c. P(B|4) is the conditional probability of B given A.

d. P(B) is the prior or marginal probability of B, and acts as a normalizing constant.

Bayes' theorem can also be interpreted in terms of likelihood, as in (3):
3) P(A|B)«< L(A| B)P(A4)

Here L(A[B) is the likelihood of A given fixed B. The rule is then an immediate consequence of the
relationship P(B | A) = L(A | B). In many contexts the likelihood function L can be multiplied by a
constant_factor, so that it is proportional to, but does not equal the conditional probability P. With this
terminology, the theorem may be paraphrased as in (4):

likelihood x prior
normalizing

C)] posterior =

In words, the posterior probability is proportional to the product of the prior probability and the likelihood.

An important application of Bayes® theorem is that it gives a rule regarding how to update or revise
the strengths of evidence-based beliefs in light of new evidence a posteriori. This is a kind of probabilistic
formulation of our daily activities. In a sense, we make a judgment about everything at every moment in
our lives; things we are going to do next, things we are going to say, how we evaluate the things we see or
hear etc. Every human judgment, whether conscious or unconscious, is influenced by our prior probability
of the events (i.e. past experiences or personal beliefs), adjusted by some likelihood of the events, given
the new data (i.e. likelihood), which yields a posteriori probability (i.e. new ideas or something learned).
Therefore, Bayes’ theorem can be viewed as a probabilistic model of human learning. The architecture of
human cognitions will be modular and need specifications in their own right, but the overall learning
algorithm can be explained in Bayesian terms.

There are a growing number of researchers in different disciplines of sciences who adopt the
Bayesian model as a theoretical basis. While Bayes’ rule itself is quite simple and straightforward, it is
very flexible in the sense that the same rule and the procedure can be adapted to varied sample sizes, from
a very small to a huge set. Unlike frequentist probability, Bayesian probability deals with a subjective level of
knowledge (sometimes called ‘credence’, i.e. degree of belief). This is intuitively more likely as a model of
human learning, because we all have personal beliefs or value systems on which every decision is based.
Some of these subjective levels of knowledge are formed via instructions in specific social and educational
settings in a country. The levels of knowledge about what is appropriate in what situations are also partially
taught and partially learned through experiences. In Bayesian terms, every time pepole are exposed to
new situations, they learn from new data and revise their posterior probability including their belief system. I

argue that the exactly same process is also applied to the acquisition and the use of second language.
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2.2. Bayesian theory in SLA

How could we realize Bayesian modeling in SLA? The overall picture is rather simple. Since Bayes’
theorem itself is a formulation of ‘learning from experience’, in other words, obtaining posterior
probability by revising prior probability in light of new attested data, we could give a model of language

learning using recaptured Bayes’ rule in (3), as in (5):

®) (a reVised system given the new data) o

(likelihood) x (an old system of language)

What is promising is that corpus-based approaches will suggest a very interesting methodological
possibility in providing input for these empty arguments in the model in (5). For example, if we compile a
corpus of learners at different proficiency levels, we could formulate the model in such a way that
probability scores for given linguistic items obtained at a certain proficiency level (Stage x, for instance)
serves as prior probability and the scores obtained at the next level (Stage x+1) will serve as the condition

for posterior probability, as in (6).
(6) (Language at Stage x+1) o (Likelihood) x (Language at Stage x)

While a real picture would be much more complex than above, Bayesian reasoning can still provide
a very interesting possibility of describing a model of SLA from a probabilistic viewpoint. In order to
illustrate this point, let us take the acquisition of verb subcategorization frame (SF henceforth) patterns as
an example. Suppose we are interested in the occurrence of a particular SF pattern of a verb, we might try
to represent subcategorization information as a probability distribution over argument frames, with
different verbal dependents expected to occur with a verb with a certain probability. For instance, we

might estimate the probability of SF patterns for a verb get as in (7):

(7) P(NP[syms) __|V=gel) = 1.0
P(NP{sys)) ___ NP[om)] | V=ger) = 0377
P(NP[syps)] . ADJ|V=ger) = 0104
P(NP[syp)] __ PP|V=gel) = 0.079
P(NP[syss] __ NP[ogi) PP | V=ger) = 0.056

P(NP[sysi] ___ NP[op] NP[ors] | V= ger) 0.053
(Note: other constructions are omitted; probabilities are derived from the British National Corpus.)

So, for instance, the probability of choosing the SF pattern “get up” can be described by modeling
the probability that a VP is headed by the verb “get”, and then the probability of certain arguments
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surrounding the verb (in this case, SUB + get + PART([up]), as in (8):

(8) P(VP - V(ger] PART(up]) = P(VP(ger] | VP) x P(VP[get] 2> V PART | VP(gei]) x P(PART[up] |
PART, VP[gef]).

The probabilities in (8) can be computed from corpora and the formal grammatical description can
be given by yet another stochastic language model called a DOP model, described in 4.2.

If such probabilistic descriptions for the choice of verb SF patterns can be extracted from learner
corpora, this information can then be integrated into a general probabilistic inference system. Suppose we
wish to reason about the difficulty in acquiring verb SF patterns by L2 learners of English. Let M be the
misuse of a particular subcategorization frame pattern of the given verb, allowing “yes” and “no.” For
explanatory purposes, let possible causes be J: the match in subcategorization pattern between English
and L1 Japanese, with P(J = yes) = 0.5, and T: Textbook influence (Whether the same subcategorization
pattern occurs in the textbook as a source of input), with P(T = yes) = 0.2. We adopt the following

hypothetical conditional probabilities for the correct use:

(9) P(M=yes|I=no,T=no) =0.7

‘ P(M =yes|J=no, T =yes) =04
P(M=yes|J=yes, T=no) =03

P(M = yes|J = yes, T = yes) =0.1

The left hand diagram in Figure 1 shows a directed graphical model of this system, with each
variable labeled by its current probability of taking the value “yes”'.

0.5 0.2 0.29 0.11

Match of SF
pattern with
L1?

Match of SF
pattern with
L1?

SF pattern
‘inL2
textbook?

Misuse of
SF pattem?

Misuse of
SF pattern?

0.45 1.0

Figure 1: Directed graphical model representing two independent potential causes of the misuse

of a verb SF pattern, with probabilities of a ‘yes’ response before and after observing the misuse.
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Let me describe how to obtain probability scores in Figure 1 in more detail. Suppose you observe the
learner corpus data and found the correct use of the SF pattern get up, and you wish to find the

conditional probabilities for J and T, given this correct use. By Bayes’ theorem,

P(M = yes|J,T)P(J,T)
P(M = yes)

(10 P(J, T| M= yes) =

The necessary calculations are laid out in Table 2. Note that, owing to the assumed independence,
P(J, T) = PQP(T). Also P(M = yes, J, T) = P(M = yes |J, T)P(J,T), and when summed this provides P(M
= yes) = 0.45.

Table 2. Calculations of probabilities for possible causes J and T

J[PD] no [0.5] yes [0.5] :
T [P(T)] no [0.8} yes [0.2] no [0.8] yes [0.2]

P(IJ,T) 04 0.1 04 0.1 1
PM=yes|J,T) 0.7 04 : 03 0.1
P(M=yes,J,T) 0.28 0.04 0.12 0.01 045
P(J, TIM=yes) 0.62 0.09 0.27 0.02 1

By summing the relevant entries in the joint posterior distribution of J and T we thus obtain P(J =
yes | M = yes) = 0.27 + 0.02 =0.29 and P(T=yes | M = yes) = 0.09 + 0.02 = 0.11. These values are
displayed in the right-hand diagram of Figure 1. Note that the observed misuse has induced a strong
dependency between the originally independent possible causes.

We now extend the system to include the possible misuse of another SF pattern of the given verb,

denoted by M2, assuming that this verb pattern is not dealt with in the textbook and that

(11) P (M2 = yes | T=yes) =02
P (M2=yes|T=no) =0.8

so that P(M2 = yes) = P(M2 = yes | T = yes)P(T=yes) + P(M2=yes|T=no)P(T=no)=02x02+0.8
x 0.8 = 0.68. The extended graph is shown in Figure 2:
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Figure 2: Introducing another misuse of an SF pattern into the system, before and after observing

that neither of the patterns are correctly used.
Suppose we now find that the other SF pattern is wrongly used (M2 = yes). Our previous posterior
distribution P(J, T | M=yes) now becomes the prior distribution for an application of Bayes’ theorem

based on observing that the second SF pattern has failed. The calculations are displayed in Table 3.

Table 3. Calculations of probabilities after observing another misuse of SF patterns

J [P no [0.5] " yes [0.5]
T [P(D)] no [0.8]) yes [0.2] no [0.8] yes [0.2]
P(), TIM=yes) 0.62 0.09 0.27 0.02 i
P(M2=yes|J,T, M=yes) 0.8 0.2 0.8 0.2
P(M2=yes,], T|M=yes) 0.496 0.018 0.216 0.004 0.734
P(J, TIM=yes, M2=ves) 0.676 0.025 0.294 0.005 1

We obtain P(J=yes|M=yes, M2=yes) = 0.299, P(T=yes|M=yes, M2=yes) = 0.03. Thus, observing
another misuse of SF patterns has decreased the chance of the influence of English textbooks on the use
of verb SF patterns. This ability to withdraw a tentative conclusion on the basis of further information is
extremely difficult to implement within a system based on logic, even with the addition of measures of
uncertainty. In contrast, it is both computationally and conceptually straightforward within a fully
probabilistic system built upon a conditional independence structure. Although the example shown above
is rather limited in scope, it is possible that we can add more variables to the model and apply exactly the
same procedure to obtain probabilistic inference from the observed data.

The above example has heuristically argued for the explanatory power of probabilistic models based
on Bayesian reasoning. I have informally introduced the idea of representing qualitative relationships

between variables by graphs and superimposing a joint probability model on the unknown qualities.
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When the graph is directed and does not contain any cycles, the resulting system is often called a
Bayesian network. Using the terms introduced earlier, we may think of this network and its numerical
inputs as forming the knowledge base, while efficient methods of implementing Bayes’ theorem form the
inference engine used to draw conclusions on the basis of possibly fragmentary evidence.

The above example assumes that the random variables involved are discrete. However, the same
formula holds in the case of continuous variables (or a mixture of discrete and continuous variables), as
long as, when M is continuous (e.g. instead of yes/no, the accuracy rate of SP patterns in a certain learner

group), we interpret P(M) as the probability density of M. See Pearl (1988) for more work related to this.
3. Advantages of the Bayesian SLA model

So far we have seen how Bayesian networks can be adopted for describing phenomena in SLA. By using
Bayesian reasoning, we could possibly define the whole framework of SLA as one realization of an

expert system. An expert system consists of two parts, summed up in the equation:
(12) Expert System = Knowledge Base + Inference Engine.

The knowledge base contains the domain specific knowledge of a problem. It is a set of linguistic
descriptions of a language. For this, I assume a DOP model, which will be described in detail in 4.2.
The inference engine consists of one or more algorithms for processing the encoded knowledge of the
‘ knowledge base together with any further specific information at hand for a given application. It is
similar to what c;)gnitive scientists call “declarative vs. procedural” knowledge.

It is definitely important to define the knowledge base properly, for the knowledge base is the core
of an expert system. For this, probabilistic information from a large amount of learner data will be very
useful. Linguistic features with probability scores will be stored in the knowledge base in each of the
language domains such as phonology, morphology, syntax, semantics and lexicon. The probabilistic data
of linguistic features from each stage of learners will be used to form the input for the Bayesian network
described in the previous section. Additional information or variables will constantly change the posterior
probability, which will subsequently be used as the prior distribution for the new input.

This whole picture of obtaining new posterior probability assumes to be similar to what is happening
cognitively in the brain. The Bayesian network model of SLA will have a strong explanatory power for
human cognition. The following section will describe how a probabilistic view should be dealt with
precisely in a formal language theory and introeduce the basic notion of a Data Oriented Parsing (DOP)
model as a candidate for such a theory. This model will help better integrate probabilistic information of a

language into the acquisition model based on Bayesian reasoning.
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4. Implementation: a Data Oriented Parsing model

As we integrate Bayesian network modeling into SLA theory construction, it is necessary to look for a
framework for linguistic description. Some people (Manning 2003, for example) claim that probabilistic
syntax can be formalized within existing formal grammatical theories such as the stochastic Optimality
Theory. I argue that it would be desirable to- look for a more data-driven approach as a theoretical
framework. For this purpose, the Data Oriented Parsing (DOP) model proposed by Bod (1993, 1998)
seems to be very promising. Here I will outline the basic features of DOP and discuss the possibilities of

analyzing leamer language within this framework.
4.1. Probabilistic grammars

Before explaining DOP, let me briefly descﬁbe probabilistic grammars in general. Probabilistic grammars
aim to describe the probabilistic nature of a large number of linguistic phenomena, such as phonological
acceptability, morphological alternations, syntactic well-formedness, semantic interpretation, sentence
disambiguation, and sociolinguistic variation. (Bod 2003: 18)

The most widely used probabilistic grammar is the probabilistic context-free grammar (PCFG).
PCFG defines a grammar as a set of phrase structure rules implicit in the tree bank (phrase structure trees)
with probabilistic information attached to each phrase structure rule. Let us consider the following two

parsed sentences in (13). We will assume that they are from a very small corpus of phrase structure trees:

(13) a. (S (NP John) (VP (V gave) (NP Mary) (NP flowers)))."
b. (S (NP Mike) (VP (V gave) (NP flowers) (PP (P to) (NP Mary)))).

Table 4 gives the rules together with their frequencies in the Treebank.

Table 4: The rules implicit in the sample Treebank and their probabilities

Rule Frequency PCFG Probability
S NP VP 2 22=1
VP = VNP NP 1 12=112
VP -> VNP PP 1 12=11
PP - P NP 1 1/1=1
NP - John 1 1/6=1/6
NP - Mike 1 1/6 = 1/6
NP - Mary 2 2/6=113
NP = flowers 2 2/6=1/3
V 2 gave 2 22=1
P=>to 1/1=1

—
>

Total
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This table allows us to derive the probability of randomly selecting the rule S > NP VP from among
all rules in the Treebank. The rule S NP VP occurs twice in a sample space of 10 rules; hence its
probability is 2/10 = 1/5. We are usually more interested in the probability of a combination of rules (i.e.,
a derivation) that generates a particular sentence. For this, we compute the probability by dividing the
number of occurrences of rules involved in the derivation of a certain sentence by the number of
occurrences of all rules. Note that this probability is actually the conditional probability P(structure A |
structure B), and thus the sum of the conditional probabilities of all rules given a certain non-terminal to
be rewritten is 1. The third column of Table 4 shows the PCFG probabilities of the rules derived from the
Treebank.

Let us now consider the probability of the derivation for John gave Mary flowers. This can be
computed as the product of the probabilities in Table 4, that is, 1 (S>NP VP) X 1/6 (NP->John) X
12(VP->NP NP) X 1(VP->gave) X 1/3(NP->Mary) X 1/3(NP->flowers) = 1/108. Likewise, we
can compute the probability of John gave flowerstoMary: 1 X 1/6 X 12 X 1 X 1/3 X 1 X 1/3
=1/108.

What is important in these probabilistic formalisms is that the probability of a whole (i.., a tree) can
be computed from the combined probabilities of its parts. The problem of PCFG is its derivational
independence from previous rules, since in PCFG, rules are independent from each other. For example, if
we consider a larger Treebank, it surely contains various derivational types of prepositions: P < to; P =
for; P - in, and so forth. The probability of observing the preposition to, however, is not equal to the
probability of observing to given that we have first observed the verb give. But this dependency between
give and to is not captured by a PCFG.

Several other formalisms, such as head-lexicalized probabilistic grammar (Collins 1996; Chamiak
1997) and probabilistic lexicalized trée-adjoining grammar (Resnik 1992), tried to capture this
dependency and the Data Oriented Parsing model (Bod 1993, 1998) is one of such models. A DOP model
captures the previously mentioned problem dependency between different constituent nodes by a subtree
that has the two relevant words as its only lexical items. Moreover, a DOP model can capture arbitrary
fixed phrases and idiom chunks, such as to take advantage of (Bod 2003: 26).

4.2. ADOP model

I have no room to elaborate on a DOP model in detail here, but let me provide a simple example of how a
DOP model works. If we consider the examples in (13a): John gave Mary flowers, we can derive from
this treebank the following subtrees:

(14) (S (NP John) (VP (V gave) (NP Mary) (NP flowers)))

(S (NP) (VP (V gave) (NP Mary) (NP flowers)))
(S (NP John) (VP (V) (NP Mary) (NP flowers)))
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(S (NP John) (VP (V gave) (NP) (NP flowers)))
(S (NP John) (VP (V gave) (NP Mary) (NP)))
(S (NP) (VP (V) (NP Mary) (NP flowers)))
(S (NP) (VP (V gave) (NP) (NP flowers)))
(S (NP) (VP (V gave) (NP Mary) (NP)))
(S (NP John) (VP (V) (NP) (NP flowers)))
(S (NP John) (VP (V) (NP Mary) (NP)))
(S (NP'John) (VP (V gave) (NP) (NP)))

(S (NP) (VP (V) (NP) (NP flowers)))

(S (NP) (VP (V) (NP Mary) (NP)))

(S (NP) (VP (V gave) (NP) (NP)))

(S (NP John) (VP (V) (NP) (NP)))

(S (NP) (VP (V) (NP) (NP)))

(VP (V) (NP Mary) (NP flowers)) .

(VP (V gave) (NP) (NP flowers))

(VP (V gave) (NP Mary) (NP))

(VP (V) (NP) (NP flowers))

(VP (V) (NP Mary) (NP))

(VP (V gave) (NP) (NP))

(VP (V) (NP) (NP))

(V gave)

(NP John)

(NP Mary)

(NP flowers)

Note: In actual DOP models in Bod (2003), all the subtrees are written in tree diagrams.

These subtrees form the underlying grammar by which new sentences are generated. Subtrees are

combined using a node substitution operation similar to the operation that combines context-free rules in
a PCFG, indicated by the symbol “o”. Given two subtrees T and U, the node substitution operation
substitutes U on the leftmost nonterminal leaf node of T, written as T o U. For example, John gave Mary

flowers can be generated by combining three subtrees from (14) as shown in Figure 3:

° NP o NP o

PN | |

e John Mary flowers

NP VP

v e

John
[s) | l I

Bave  Mary flowers

Figure 3: Generating John gave Mary flowers by combining subtrees from (18)

The events involved in this derivation are listed in Table 5.
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Table S. The probability of a derivation is the joint probability of selecting its subtrees

Event

(i) selecting the subtree [s NP [vp [v gave] NP NP]]] from among the subtrees with root label S,
(ii) selecting the subtree {yp John) from among the subtrees with root label NP,

(iii) selecting the subtree [yp Mary] from among the subtrees with root label NP,

(iv) selecting the subtree [np flowers] from among the subtrees with root label NP.

The probability of (i) in Table 5 is computed by dividing the number of occurrences of the subtree [S
NP [VP [V gave] NP NP]]] in (14) by the total number of occurrences of subtrees with root lable S: 1/16.
The probability of (ii) is equal to 1/3, and the probabilities of (iii) and (iv) are also equal to 1/3
respectively.

The probability of the whole derivation is the joint probability of the four selections in Table 4.
Since in DOP each subtree selection depends only on the root label and not on the previous selections, the
probability of a derivation is the product of the probabilities of the subtrees, in this case 1/16 X 1/3 X
1/3 X 1/3=1/432.

The DOP model outlined here does not exhibit a one-to-one correspondence between derivation and
tree, as PCFG does. Instead, there may be several distinct derivations from the same tree. The probability
that a certain tree occurs is the probability that any of its derivations occurs. Thus the probability of a tree
is the sum of the probabilities of its derivations. Bod (2003) points out that this means that in DOP,
evidence for a tree accumulates: the more derivations a tree has, the larger its probability tends to be (ibid:
30). For further detail, see Bod (1992, 1998, 2003). He argues that language users store arbitrarily large
sentence fragments in memory, and continuously and incrementally update its fragment memory given
new input. Although language users cannot remember everything, they will initially store everything, as
they process language input, and calculate the frequencies in order to accumulate the frequency
information of subtrees. Thus, the DOP model fits very well with the Bayesian way of thinking described
earlier. Another advantage is that the DOP model can effectively handle dependency problems that other
models have. Since the model proposes that language users store sentence fragments in memory and that
these fragments can range from two-word units to entire sentences, language users do not always have to
generate or parse sentences from scratch using the rules of the grammar. Sometimes they can
productively reuse previous heard sentences or sentence fragments. This will make language processing
and language learning very easy, dealing with the problem of how to incorporate idiom principles
(Sinclair 1991) or lexicalized sentence stems (Pawley and Syder 1983) into a stochastic model of

language.
5. Integrative perspectives of SLA as a stochastic language model

I have shown that learner corpus research has come to a turning point, where a statistical linguistic

analysis of learner language needs to be integrated into a formal theory of language acquisition. As an
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example, I have proposed a DOP model as a promising model of a probabilistic grammar. I have also
argued that the entire SLA process can be explained by Bayesian reasoning.

Since this paper gave just a brief sketch of a new probabilistic model of SLA and how learner
corpora play an important role there, it would be desirable to make a specific proposal as to how
probabilistic data from learner corpora can form input for Bayesian network models. For this, not only a
specific model of L2 acquisition of, for example, verb SF patterns, but also the general picture of L2
acquisition processes in the context of stochastic theories of human learning needs to be explored.
Second language learners® use of a particular expression in a language depends on their intended
meanings, various contextual as well as situational settings. All the choices made are affected by the prior
probability of L2 learners’ knowledge or belief. Once a certain string of a sentence is produced, then that
string becomes a part of prior probability, leading to the prediction of what is going to be said next. This
knowledge of a language is also influenced by many other factors, including learners’ L1 knowledge, age,
sex, cognitive maturity, L2 instructions, motivation, and exposure to L2 input, among others. There are
too many variables to consider, thus it would be extremely difficult to estimate the true value of L2
competence of a particular L2 learner. That is why we use Bayesian modeling in describing a complicated
system of L2 acquisition. Instead of hoping to identify an exact state of abilities in L2, Bayesian
methods enable statements to be made about the partial knowledge available (based on data) concerning
‘state of nature’ (unobservable or as yet unobserved) of L2 competence in a systematic way using
probability as the yardstick.

The strength of Bayesian network modeling is that the same mathematical procedure can be applied
to very small data or to larger, multilevel data. We can start from a very simple model in SLA and build
up the model into a relatively complex one, without changing any statistical assumptions. The same
Bayesian methods will always work on new data. .

It is also important to place Bayesian networks in a wider context of so-called highly structured
stochastic systems (HSSS). Many disciplines, such as genetics, image analysis, geography, marketing,
predictions of El Nifio effects among others, adopt this as a unifying system that can lead to valuable
cross-fertilization of ideas. Within the artificial intelligence community, neural networks are natural
candidates for interpretatidn as probabilistic graphical models, and are increasingly being analyzed within
a Bayesian statistical framework (see Neal 1996). In natural language processing, Hidden Markov models
can likewise be considered as special cases of Bayesian networks (Smyth et al. 1997). By defining a
model of SLA as a stochastic system, using probabilistic information from a large body of learner
language production data at different levels of proficiency or developmental time frames, we could

possibly describe and explain the SLA process from an innovative viewpoint.
6. Future directions

In this paper, I have argued that learner corpus research should be able to make a significant contribution
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to a probabilistic view of SLA theory based on Bayesian reasoning. This research is still at the
preliminary stage of theory construction, and I need to further exploit the possibility of applying Bayesian
networks for SLA modeling, but it would suffice to say that such an attempt will have a great potential
and that learner corpora would play a significant role there. Further studies need to be done to provide

specific procedures of building a stochastic model of SLA.

Notes
This paper is based on my article in Baker (2009) with a slight modification.
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