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Integrating Learner Corpus Analysis
into a Probabilistic Model of Second
Language Acquisition

Yukio Tono

This chapter considers recent research directions that have taken place in the field of learner
corpora. I explore how multifactorial analytical techniques that use log-linear analyses
can help to identify the extent to which different individual factors (and combinations of
factors) influence the output of learners. Additionally, I show how probability-based theories
such as the Bayesian approach can be used to explain the second language acquisition
process. Using examples, I show how Bayesian probability theory enables statements to be
made based on the partial knowledge available (e.g. patterns in corpus data) regarding as yel
unobserved L2 competence. Finally, I outline the basic features of the Data Oriented Parsing
model (another probabilistic model) and discuss the possibilities of analysing learner lan-
guage within this framework.

11.1 Introduction

A learner corpus is a collection of texts, normally essays, produced by people
who are learning a second or foreign language. Learner corpora have grown
into one of the major types of specialized corpora in corpus linguistics. As James
(1992: 190) notes ‘The really authentic texts for foreign language learning are
not those produced by native speakers for native speakers, but those produced by
learners themselves.’

Learner corpora are therefore compiled with several different purposes in
mind. First, they are used for providing information on learners’ common errors
for producing reference materials such as dictionaries or grammars (see, e.g.
Gillard and Gadsby 1998). Two commercial learner corpora, the Longman Learn-
ers’ Corpus (LLC) and the Cambridge Learner Corpus (CLC) have been used for
these purposes. Second, learner corpora can be used for describing the character-
istics of interlanguage produced by second language (L2) learners. The Interna-
tional Corpus of Learner English (ICLE) (Granger 1998) is a project which aimed
to identify those features (overuse/underuse phenomena as well as errors) which
are common to learners with different first language (L1) backgrounds and those
which are unique to each L1. As well as comparing native speakers of different L1s,
learner analysis can also carry out comparisons of learners at different levels of
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proficiency, see for example, research carried out on the NICT JLE (National
Institute of Information and Communications Technology Japanese Learner of
English) Corpus (Izumi et al. 2003) or the JEFLL (Japanese EFL Learner) Corpus
(Tono 2007). Third, learner corpora can be used to provide classroom language
teachers with an opportunity to monitor their students’ performance in the frame-
work of Action Research. Action Research is a reflective process of progressive
problem solving led mainly by the teacher herself in a specific classroom context.
Action Research usually takes place in a collaborative context with data-driven
analysis (Johns 1997) or research designed to enable predictions about personal
(e.g. teacher or student) and organizational (e.g. school or education board)
change. For this kind of analysis, the use of small sets of learner corpora sampled
in a specific learning context has become increasingly popular. For more infor-
mation on types and features of learner corpora, see Pravec (2002).

This chapter will argue that research using learner corpora has come to a turn-
ing point methodologically and theoretically. Methodologically, it is necessary to
integrate multiple variables concerning learners and learning environments into
the analysis of learner corpora. Theoretically, learner corpus researchers need to
consider how much contribution they could make to second language acquisition
(SLA) theory construction as they investigate the patterns of use in L2 in terms of
frequencies and distributions of learner errors and over/underuse phenomena.
With this aim in mind, I will first discuss the complex nature of learner corpus
research and the importance of multifactorial research design. Then I will intro-
duce how probabilistic analysis can contribute to the formulation of linguistic and
acquisition theories and discuss the possibility of theoretical reformulation of
problems in SLA in light of probability theories. Finally, I will propose a framework
of SLA theory using the concept of the Bayesian network as an underlying theoret-
ical assumption and the Data Oriented Parsing (DOP) model as an attempt to
integrate learner corpus findings into a probabilistic model of SLA.

11.2 Recent Challenges for Learner Corpus Research

As more and more learner corpora become available and the findings based on
the analysis of such corpora are published, it is becoming clear that there are dis-
crepancies between the approaches taken by learner corpus researchers and main-
stream SLA researchers. While researchers working on learner corpora tend to
look at overall patterns of language use (and misuse) across proficiency (e.g. native
speaker vs non-native speaker; different ability levels of learners) and describe
similarities and differences between the groups, SLA researchers have a tendency
to set specific hypotheses to test against the data in order to identify causal rela-
tionships between variables. SLA researchers usually have specific theoretical
frameworks on which their hypothesis is built upon while learner corpus research-
ers tend not to have such a theory a priori and often pursue data-driven, theory-
generating approaches. The corpus-based approach to SLA has emerged among
corpus linguists and not SLA specialists, which makes learner corpus research
look rather weak in terms of theoretical perspectives. However, learner corpus
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researchers have argued that it is worth accumulating facts about SLA processes
first before moving onto theory construction.

The problem is how can this be achieved? There are groups of researchers who
set specific hypotheses within a certain framework of SLA theories and use learner
corpora where appropriate to test these hypotheses. Such people do not always
have sufficient knowledge about corpus design criteria and may lack technical
skills in extracting necessary linguistic observations from the corpus. Other groups
of people working in SLA research construct their own corpus data which suit
their needs and methodological assumptions. It is often the case, however, that
their corpora are limited in size from a standard corpus linguistic point of view
and therefore generalization beyond the corpus under examination is difficult.
Most of the studies so far exhibit such methodological shortcomings.

It is also difficult to relate corpus findings to actual educational settings. Corpus
building/analysis projects such as ICLE largely ignore the educational contexts in
each country and they assume that the findings could be applicable for advanced
learners of English in general. This is reasonable as long as the performance
of advanced learners is relatively stable and less vulnerable to a specific learning
environment in each country. In the case of younger or less advanced learners,
however, observed data are heavily dependent upon the nature of input and inter-
actions in the classroom. For example, the order of acquisition could be a reflec-
tion of the order of instructions given to learners. It would be ideal to relate corpus
findings to specific input sources such as textbooks used in the class or classroom
observation data (cf. the SCoRE Project in Singapore; Hong 2005). Therefore,
one future direction will be to integrate educational and contextual as well as
linguistic variables into corpus analysis, together with specific SLA hypotheses in
mind. In dealing with multiple variables, a careful statistical treatment should
be made to ensure internal and external validity. In the following section, I will
illustrate such an approach in further detail.

11.3 Multifactorial Analyses and Beyond

Tono (2002) investigated the acquisition of verb subcategorization patterns by
Japanese-speaking learners of English. This issue is related to the acquisition of
argument structure and has been discussed with reference to both L1 and L2
acquisition (Pinker 1989; Juffs 2000). Tono compiled a corpus of free composi-
tions written by beginning to intermediate level learners of English in Japan,
called the JEFLL (Japanese EFL Learner) Corpus. The JEFLL Corpus consists of
English compositions written by approximately 10,000 students, ranging from the
first year of junior high school to the third year of senior high school (Year 7 to
12), totalling a little less than 700,000 tokens. Composition tasks were strictly
controlled: all compositions were written in the classroom without the help of a
dictionary. Additionally, a twenty-minute time limit was imposed. Students chose
one of six topics (based on three narrative and three argumentative composition
questions).
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What makes Tono’s (2002) design multifactorial? The primary goal of his
research is to identify relative difficulties in acquiring different verbs in terms of
the use of their subcategorization frame (SF) patterns.! A simple picture of the
design would be illustrated as follows:

(1) Independent variable: proficiency level (defined for the purpose of the
study as ‘years of schooling’)
Dependent variable: use of verb SF patterns

However, a more widereaching analysis would take into account (a) whether
only one verb or multiple verbs are being examined, (b) types of verb SF, and
(c) distinctions between use and misuse. Thus, (1) should be rewritten as (2):

(2) Independentvariables:  a. proficiency level
b. types of verbs
: c. types of SF patterns
Dependent variable: frequencies of use vs misuse of SF patterns

Tono’s study also took into account L1 influence, L2 inherent factors and input
from the classroom. L1 influence was defined as the similarities in SF patterns
between the English verbs under study and their translation equivalents in Japa-
nese. For L2 inherent factors, Levin’s (1993) verb semantic categories were used
to classify the verbs in the study. The influence of classroom input was defined as
the amount of exposure to specific verbs and their SF patterns in the textbooks,
measured by their frequencies in the English textbook corpus. Thus, the overall
relations among multiple variables are shown in (3):

(3) Independent variables:

- Learner factor: (a) Proficiency level (Factor 1)
- L1 factors: (b) Degree of similarity/difference in SF patterns
between L1 Japanese and L2 English (Factor 2)
(c) Frequencies of SF patterns in English (Factor 3)
(d) Frequencies of SF patterns in Japanese (Factor 4)
- Input factor: (e) Frequencies of SF patterns in the textbooks
(Factor 5)

Dependent variable: Frequencies of use vs misuse of SF patterns
(Factor 6)

Since many of the factors described in (3) are categorical or nominal data, we
need to deal with multi-way frequency tables. For this, Tono employed log-linear
analysis. The term ‘log-linear’ derives from the fact that one can, through logarith-
mic transformations, restate the problem of analysing multi-way frequency tables
in terms that are very similar to ANOVA. Specifically, one may think of a mult-
way frequency table as reflecting various main effects and interaction effects that
add together in a linear fashion to bring about the observed table of frequencies.
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Table 11.1 The results of log-linear analysis for the verb

get (from Tono 2002).
Verb The final model by log-linear analysis
get 643, 543, 532, 432, 61, 1

Log-linear analysis can also be used for evaluating the relative importance of
each independent variable against the dependent variable. By taking 2 model
fitting approach with backward deletion using the saturated model, we could
reduce the number of independent variables to the most parsimonious sets of
variables. Table 11.1 shows the results of log-linear analysis performed on the use
of the verb get. Each number in the table consists of the factors which interact with
each other. For example, 643 signifies that there is a significantinteraction between
factors 6, 4 and 3.

The table shows that the verb get can be best explained by a model consisting
of the three-way interaction effects of Factors 6-4-3, 5-4-3, 5-3-2 and 4-3-2 and
the two-way interaction effects of Factors 6 and 1, with the main effect being
Factor 1. This shows that there is a significant effect of school year (Factor 1) and
interaction effects between school year and use/misuse (Factors 6 and 1). Factor 6
is also related to frequencies of subcategorization frame (SF) patterns of the
Japanese-equivalent verb eru (Factor 4) and degrees of matching in SF patterns
between English and Japanese equivalents (Factor 2). This kind of analysis makes
it possible to identify which factors play a significant role in explaining the com-
plex interactions of multiple variables. The results show the following interesting
findings. See Tono (2002) for further details:

(4) a. There is a significant relationship between school years and frequencies of
use of SF patterns in major verbs.

b. Frequencies in SF patterns have a strong correlation with frequencies
in English textbooks, which means students use more verbs with various -
SF patterns as they are exposed to more variations in the textbooks.

c. Despite the findings in (b), there is no significant correlation between
frequencies of ‘correct’ use of SF patterns and frequencies in textbooks.
The amount of exposure does not ensure correct use of the forms.

d. The factors affecting the use/misuse of the SF patterns are mainly cross-
linguistic factors, such as degrees of similarities in SF patterns between the
target language and the mother tongue, or frequencies of SF patterns
in the first language (Japanese).

Following Tono (2002), other studies have emphasized the value of multi-factorial
corpus analysis as a methodological innovation (see, e.g. Gries 2003). Second lan-
guage acquisition is a multi-faceted phenomenon, composed of complex factors
related to learner’s cognitive and affective variables, environmental variables
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(types of formal instruction, school settings, curriculums, educational policies of
the country), as well as linguistic (L2) or cross-linguistic (L1 vs L2) factors. There-
fore it is sensible to adopt an integrative approach which takes multiple variables
into account when tackling specific problems in SLA using corpus-based method-
ologies. Also since the primary information from learner corpora is based on
frequencies and distributions of language features in interlanguage, it would be
important to consider how the findings can fit into existing SLA theory. Below
I argue that corpus-based approaches can help to shed light on theoretical
perspectives in SLA. The following section outlines a new framework in learner
corpus research, bridging the gap between purely descriptive studies using learner
corpora and theoretical perspectives in SLA.

11.4 Motivating Probabilities

In recent years, a strong consensus has emerged that human cognition is based
on probabilistic processing (cf. Bod et al. 2003). The probabilistic approach is
promising in modelling brain functioning and its ability to accurately model
phenomena ‘from psychophysics and neurophysiology’ (ibid.: 2). Bod et al. also
claim that the language faculty itself displays probabilistic properties. I argue that
this probabilistic view also holds for various phenomena in L2 acquisition and
could have a significant impact on theory construction in SLA. I will briefly outline
the nature of this evidence below.

11.4.1 Variation

Zuraw (2003) provides evidence that language change can result from probabilis-
tic inference on the part of listeners, and that probabilistic reasoning could explain
the maintenance of lexical regularities over (historic) time. Individual variations
in SLA can also be explained by probabilistic factors such as how often learners
are exposed to certain linguistic phenomena in particular educational settings.
Variations in input characteristics could be determined by such probabilistic
factors as frequencies and order of presentation of language items in a particular
syllabus or materials such as textbooks or course modules.

11.4.2 Frequency

One striking clue to the importance of probabilities in language comes from the
wealth of frequency effects that pervade language representation, processing
and language change (Bod et al. 2003: 3). This is true for SLA. Frequent words are
recognized faster than infrequent words (Jurafsky 1996). Frequent words in input
are also more likely to be used by learners than infrequent words (Tono 2002).
Frequency affects language processes, so it must be represented somewhere. More
and more scholars have come to believe that probabilistic information is stored
in human brains to assist automatic processing of various kinds.
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11.4.3 Gradience

Many phenomena in language may appear categorical at first glance, but upon
closer inspection show clear signs of gradience. Manning (2003) shows that even
verb subcategorization patterns should better be treated in terms of gradients, as
there are numerous unclear cases which lie between clear arguments and clear
adjuncts (ibid.: 302). Rather than maintaining a categorical argument/adjunct
distinction and having to make in/out decisions about such cases, we might instead
represent subcategorization information as a probability distribution over argu-
ment frames, with different verbal dependents expected to occur with a verb with
a certain probability (ibid.: 303). This type of analysis is readily applicable to cases
in L2 acquisition. A strong claim can be made regarding the gradient nature of
language in terms of a probability distribution over linguistic phenomena based
on comparisons between native speaker’s corpora and learner corpora.

11.4.4 Acquisition

Bod et al. (2003: 6) claim that ‘adding probabilities to linguistics makes the acqui-
sition easier, not harder’. Generalizations based on statistical inferences become
increasingly robust as sample size increases. This holds for both positive and nega-
tive generalizations: as the range and quantity of data increase, statistical models
are able to acquire negative evidence with increasing certainty. In formal L2
classroom settings, it is also very likely that learners will be exposed to negative
evidence as well. Instructed knowledge of this type could serve to form a part of
probabilistic information in a learner’s mind besides actual exposure to primary
data, which facilitates the processing of certain linguistic structures more readily
than others.

11.4.5 What Does the Evidence Show?

The evidence above seems to indicate that a probabilistic approach will be very
promising in theory-construction, not in only linguistics but also second language
acquisition. It could be argued that corpus linguistics can provide a very strong
empirical basis for this approach. By analysing various aspects of learner language
quantitatively and at the same time integrating the results of the observations into
the probabilistic model of learning, we could possibly produce a better picture of
L2 learning and acquisition. In the next section, I will further explore this possibil-
ity and introduce one of the most promising statistical approaches, Bayesian statis-
tics and network modelling as an underlying principle of language acquisition.

11.5 Integrating Probabilities into SLA Theory

One of the strengths of corpus linguistics is its data-driven nature: findings are sup-
ported by a large amount of attested language use data. This feature has been
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increasingly highlighted as electronic texts become increasingly available online.
The dramatic increase in the size of available corpus data has also changed the
way that people use statistics. Traditional mathematical statistics have been replaced
by computational statistics, involving robust machine-learning algorithms and
probabilistic inferencing on large-scale data. This shift towards more data-centred
approaches should also be applied in the formulation of SLA theory by using
learner corpora. By working on large amounts of learner data using probabilistic
methods, it is possible to create a totally new type of learning model. In the
following sections, I will introduce Bayesian network modelling as the basis of such
probability theories and discuss how to view acquisition theory from Bayesian
viewpoints.

11.5.1 Bayes’ Theorem

Let me briefly describe Bayes’ theorem and how it is useful for theory construction
in SLA.2 Bayes’ theorem is a probability rule, currently widely used in the information
sciences to cope with uncertainty from known facts or experience. It serves as a
base theory for various problem solving algorithms as well as data mining methods.
Bayes’ theorem is a rule in probability theory that relates to conditional probabili-
ties. Conditional probability is the probability of the occurrence of an event A, given
the occurrence of some other event B. Conditional probability is written P(A|B),
and is read ‘the probability of A, given B'. Bayes’ theorem relates the conditional
and marginal probabilities of stochastic events A and B and is formulated as in

(5):

P(B|A) P(A)

Each term in Bayes’ theorem has a conventional name as in (6):

(6) a. P(A) is the prior probability or marginal probability of A. It is ‘prior’ in the
sense that it does not take into account any information about B.
b. P(A|B) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the
specified value of B.

c. P(B|A) is the conditional probability of B given A.

d. P(B) is the prior or marginal probability of B, and acts as a normalizing
constant.

Bayes’ theorem can also be interpreted in terms of likelikood, as in (7):
(7) P(A|B) =< L(A|B)P(A)

Here L(A|B) is the likelihood of A given fixed B. The rule is then an immediate con-
sequence of the relationship P(B| A) = L(A | B). In many contexts the likelihood
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function L can be multiplied by a constant factor, so that it is proportional to, but
does not equal the conditional probability P. With this terminology, the theorem
may be paraphrased as in (8):

likelihood X prior
normalizing

(8) posterior =

In words, the posterior probability is proportional to the product of the prior
probability and the likelihood.

An important application of Bayes’ theorem is that it gives a rule regarding
how to update or revise the strengths of evidence-based beliefs in light of new evi-
dence a posteriori. This is a kind of probabilistic formulation of our daily activities.
In a sense, we make a judgement about everything at every moment in our lives;
things we are going to do next, things we are going to say, how we evaluate the
things we see or hear and so on. Every human judgement, whether conscious or
unconscious, is influenced by our prior probability of the events (i.e. past experi-
ences or personal beliefs), adjusted by some likelihood of the events, given new
data (i.e. likelihood), which yields a posteriori probability (i.e. new ideas or some-
thing learned). Therefore, Bayes’ theorem can be viewed as a probabilistic model
of human learning. The architecture of human cognitions will be modular and
need specifications in their own right, but the overall learning algorithm can be
explained in Bayesian terms.

There are a growing number of researchers in different disciplines of sciences
who have adopted the Bayesian model as a theoretical basis. While Bayes’ rule
itself is quite simple and straightforward, it is very flexible in the sense that the
same rule and the procedure can be adapted to varied sample sizes, from a very
small to a huge set. Unlike frequentist probability, Bayesian probability deals
with a subjective level of knowledge (sometimes called ‘credence’, i.e. degree of
belief). This is intuitively more likely as a model of human learning, because we
all have personal beliefs or value systems on which every decision is based. Some of
these subjective levels of knowledge are formed via instructions in specific social
and educational settings in a country. The levels of knowledge about what is .
appropriate in what situations are also partially taught and partially learned
through experiences. In Bayesian terms, every time people are exposed to new
situations, they learn from new data and revise their posterior probability includ-
ing their belief system. I argue that exactly the same process is also applied to the
acquisition and the use of second language.

11.5.2 Bayesian Theory in SLA

How could we realize Bayesian modelling in SLA? The overall picture is simple.
Since Bayes’ theorem itself is a formulation of ‘learning from experience’, in other
words, obtaining posterior probability by revising prior probability in light of new



Learner Corpus Analysis and SLA 193

attested data, we could give a model of language learning based on Bayes’ rule in
(7), asin (9):

) (a revised system given the new data) o<
(likelihood) x (an old system of language)

What is promising is that corpus-based approaches will suggest a very interesting
methodological possibility in providing input for these empty arguments in the
model in (9). For example, if we compile a corpus of learners at different profi-
ciency levels, we could formulate the model in such a way that probability scores
for given linguistic items obtained at a certain proficiency level (Stage x, for
instance) serve as the prior probability, while the scores obtained at the next level
(Stage x + 1) will serve as the condition for posterior probability, as in (10).

(10) (Language at Stage x+ 1) o< (Likelihood) x (Language at Stage x)

While the real picture would be much more complex than above, Bayesian reason-
ing can still provide the interesting possibility of describing a model of SLA from a
probabilistic viewpoint. In order to illustrate this point, let us now come back to
the example of verb SF pattern acquisition. Suppose we are interested in the occur-
rence of a particular SF pattern of a verb, we might try to represent subcategoriza-
tion information as a probability distribution over argument frames, with different
verbal dependents expected to occur with a verb with a certain probability. For
instance, we might estimate the probability of SF patterns for a verb getas in (11):

(11) P(NP,, | V=ge) =1.0
P(NPy, NPy | V= go) =0.377
P(NP,, ADJ| V= ge) =0.104
P(NPgy, PP| V= gel) =0.079
P(NPigyy, NPy PP V= ge) = 0.056
P(NPygy, NPy NP | V=ge)  =0.053

(Note: Probabilities are derived from the British National Corpus. Other
constructions are omitted.)

So, for instance, the probability of choosing the SF pattern get up can be described
by modelling the probability that a VP is headed by the verb get, and then the prob-
ability of certain arguments surrounding the verb (in this case, SUB + gef +
PART[up]), as in (12):

(12) P(VP — V([get] PART[up]) = P(VP[ges] | VP) %
P(VP[get] — V PART | VP[gei]) x P(PART[up)] | PART, VP[get]).
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The probabilities in (12) can be computed from corpora and the formal grammat-
ical description can be given by yet another stochastic language model called a
DOP model, described in Section 11.6.

If such probabilistic descriptions for the choice of verb SF patterns can be
extracted from learner corpora, this information can then be integrated into a
general probabilistic inference system. Suppose we wish to reason about the
difficulty in acquiring verb SF patterns by Japanese learners of English. Let M be
the misuse of a particular subcategorization frame pattern of the given verb, allow-
ing ‘yes’ and ‘no’. For explanatory purposes, let possible causes be J: the match in
subcategorization pattern between English and L1 Japanese, with P(J = yes) = 0.5,
and T: Textbook influence (whether the same subcategorization pattern occurs in
the textbook as a source of input), with P(T = yes) = 0.2. We adopt the following
hypothetical conditional probabilities for the correct use:

P(M=vyes|J=no, T=no) =0.7
P(M=yes|J=no,T=yes) =04
(13) P(M=yes|]J=yes, T=no) =0.3
P(M=yes|]=yes, T=yes) =0.1

The left-hand diagram in Fig. 11.1 shows a directed graphical model of this
system, with each variable labelled by its current probability of taking the
value ‘yes’.

Let me describe how to obtain probability scores in Fig. 11.1 in more detail.
Suppose you observe the learner corpus data and found the correct use of the SF
pattern get up, and you wish to find the conditional probabilities for ] and T, given
this correct use. By Bayes’ theorem,

(14) P(J, T | M =vyes) = P(M = yes| J,T) P(J, T)
P(M = yes)
0.5 0.2 0.29 0.1

Match of SF
pattern with
L1?

Match of SF
pattern with
L1?

SF pattern
inL2
textbook? textbook?

Misuse of Misuse of .
SF pattern? SF pattern?

0.15 1.0

SF pattern
inL2

Figure 11.1 Directed graphical model representing two independent potential causes of
the misuse of a verb SF pattern, with probabilities of a ‘yes’ response before and
after observing the misuse.



Learner Corpus Analysis and SLA 195

The necessary calculations are laid out in Table 11.2. Note that, owing to the
assumed independence, P(J, T) = P(J)P(T). Also P(M = yes, J, T) = P(M = yes
J, T)P(J, T), and when summed this provides P(M = yes) = 0.45.

By summing the relevant entries in the joint posterior distribution of J and T
we thus obtain P(J = yes | M = yes) = 0.27 + 0.02 = 0.29 and P(T = yes | M = yes) =
0.09 + 0.02 = 0.11. These values are displayed in the right-hand diagram of
Fig. 11.1. Note that the observed misuse has induced a strong dependency between
the originally independent possible causes.

We now extend the system to include the possible misuse of another SF pattern
of the given verb, denoted by M2, assuming that this verb pattern is not dealt with
in the textbook and that

P(M2=yes | T=yes) =0.2

(15) P(M2=yes| T=no) =0.8

so that P(M2 = yes) = P(M2 =yes | T = yes)P(T=yes) + P (M2 =yes | T = no) (T =
no) =0.2 x 0.2 + 0.8 x 0.8 = 0.68. The extended graph is shown in Fig. 11.2.

Table 11.2 Calculations of probabilities for possible causes J and T.

JP(D] no [0.5] yes [0.5]

T [P(T)] no [0.8]  yes [0.2] mo [0.8] yes [0.2]

P(.T) 0.4 0.1 0.4 0.1 1
P(M=yes|],T) 0.7 0.4 0.3 0.1

P(M=yes, ],T) 0.28 0.04 0.12 0.01 0.45
P(],T|M=yes) 0.62 0.09 0.27 0.02 1

0.5 . 0.2 0.29 0.03

Match of SF SF pattern Match of SF SF pattern
pattern with inL2 pattern with inL2
L1? textbook? L1?

textbook?

Misuse of Misuse of Misuse of Misuse of
SF pattern 2? SF pattern2? SF pattern 2? SF pattern?
0.68 0.45 1.0 1.0

Figure 11.2 Introducing another misuse of an SF pattern into the system, before and after
observing that neither of the patterns is correctly used.
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Suppose we now find that the other SF pattern is incorrectly used (M2 = yes).
Our previous posterior distribution P(J, T | M=yes) now becomes the prior distri-
bution for an application of Bayes’ theorem based on observing that the second SF
pattern has failed.

The calculations are displayed in Table 11.3.

We obtain P(] = yes|M = yes, M2 = yes) = 0.299, P(T = yes|M = yes, M2 = yes) = 0.03.
Thus, observing another misuse of SF patterns has decreased the chance of the
influence of English textbooks on the use of verb SF patterns. This ability to with-
draw a tentative conclusion on the basis of further information is extremely
difficult to implement within a system based on logic, even with the addition of
measures of uncertainty. In contrast, it is both computationally and conceptually
straightforward within a fully probabilistic system built upon a conditional inde-
- pendence structure. Although the example shown above is rather limited in scope,
it is possible that we can add more variables to the model and apply exactly the
same procedure to obtain probabilistic inference from the observed data.

The above example has heuristically argued for the explanatory power of proba-
bilistic models based on Bayesian reasoning. I have informally introduced the idea
of representing qualitative relationships between variables by graphs and superim-
posing a joint probability model on the unknown qualities. When the graph is
directed and does not contain any cycles,’ the resulting system is often called a
Bayesian metwork. Using the terms introduced earlier, we may think of this
network and its numerical inputs as forming the knowledge base, while efficient
methods of implementing Bayes’ theorem form the inference engine used to draw
conclusions on the basis of possibly fragmentary evidence.

The above example assumes that the random variables involved are discrete.
However, the same formula holds in the case of continuous variables (or a mixture
of discrete and continuous variables), as long as, when M is continuous (e.g. instead
of yes/no, the accuracy rate of SP patterns in a certain learner group), we interpret
P(M) as the probability density of M. See Pearl (1988) for more work related
to this.

Table 11.3 Re-calculations of probabilities after observing another misuse of the SF
pattern.

JP(D] ‘ no [0.5] yes [0.5]

T [P(T)] no [0.8]  yes [0.2] no [0.8] yes [0.2]

P(J,T | M=yes) 0.62 0.09 0.27 0.02 1
P(M2=yes | ], T, M=yes) 0.8 0.2 0.8 0.2

P(M2=yes, ],T | M=yes) 0.496 0.018 0.216 0.004 0.734

P(J,T | M=yes, M2=yes) 0.676 0.025 0.294 0.005 1
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11.5.3 Advantages of the Bayesian SLA Model

So far we have seen how Bayesian networks can be adopted for describing phe-
nomena in SLA. By using Bayesian reasoning, we could possibly define the whole
framework of SLA as one realization of an expert system. An expert system consists
of two parts, summed up in the equation:

(16) Expert System = Knowledge Base + Inference Engine.

The knowledge base contains the domain specific knowledge of a problem. It is
a set of linguistic descriptions of a language. For this, I assume a DOP model,
which will be described in detail in the following section. The inference engine con-
sists of one or more algorithms for processing the encoded knowledge of the
knowledge base together with any further specific information at hand for a given
application. It is similar to what cognitive scientists call ‘declarative vs procedural’
knowledge.

As the knowledge base is the core of an expert system, it is important to define
it properly. To achieve this, probabilistic information obtained from a large amount
of learner data will be useful. Linguistic features with probability scores will be
stored in the knowledge base in each of the language domains such as phonology,
morphology, syntax, semantics and lexicon. The probabilistic data of linguistic
features from each stage of learners will be used to form the input for the Bayesian
network described in the previous section. Additional information or variables will
constantly change the posterior probability, which will subsequently be used as the
prior distribution for the new input.

This whole picture of obtaining new posterior probability is assumed to be simi-
lar to what is happening cognitively in the brain. The Bayesian network model of
SLA will have a strong explanatory power for human cognition. The following sec-
tion will describe how a probabilistic view should be dealt with precisely in a formal
language theory and introduce the basic notion of a DOP model asa candidate for
such a theory. This model will help to better integrate probabilistic information
of a language into the acquisition model based on Bayesian reasoning.

11.6 Implementation: A DOP Model

As we integrate Bayesian network modelling into SLA theory construction, it is
necessary to look for a framework for linguistic description. Some people (Man-
ning 2003, for example) claim that probabilistic syntax can be formalized within
existing formal grammatical theories. I argue that it would be desirable to look for
a more data-driven approach as a theoretical framework. For this purpose, the
DOP model proposed by Bod (1992, 1998) seems to be promising. Here I will out-
line the basic features of DOP and discuss the possibilities of analysing learner
language within this framework.
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11.6.1 Probabilistic Grammars

Before explaining DOP, let me briefly describe probabilistic grammars in general.
Probabilistic grammars aim to describe the probabilistic nature of a large number
of linguistic phenomena, such as phonological acceptability, morphological alter-
nations, syntactic well-formedness, semantic interpretation, sentence disambigua-
tion and sociolinguistic variation (Bod 2003: 18).

The most widely used probabilistic grammar is the probabilistic context-free gram-
mar (PCFG). PCFG defines a grammar as a set of phrase structure rules implicit in
the tree bank (phrase structure trees) with probabilistic information attached to
each phrase structure rule. Let us consider the following two parsed sentences in
(17). We will assume that they are from a very small corpus of phrase structure
trees:

a7 a. (S (NP John) (VP (V gave) (NP Mary) (NP flowers))).
b. (S (NP Mike) (VP (V gave) (NP flowers) (PP (P to) (NP Mary)))).

Table 11.4 gives the rules together with their frequencies in the Treebank.

Table 11.4 allows us to derive the probability of randomly selecting the rule S —
NP VP from among all the rules in the Treebank. For example, the rule S- NP VP
occurs twice in a sample space of 10 possible rules, so its probability is 2/10 = 1/5.
We are usually more interested in the probability of a combination of rules (i.e. a
derivation) that generates a particular sentence. For this, we compute the proba-
bility by dividing the number of occurrences of rules involved in the derivation of
a certain sentence by the number of occurrences of all rules. Note that this proba-
bility is actually the conditional probability P(structure A | structure B), and thus

Table 11.4 The rules implicit in the sample Treebank
and their probabilities.

Rule Frequency PCFG Probability
S—->NPVP 2 2/2=1

VP — VNP NP 1 1/2=1/2
VP->VNPPP ~ 1 1/2=1/2
PP —» P NP 1- 1/1=1

NP — John 1 1/6=1/6
NP — Mike 1 1/6=1/6
NP — Mary 2 2/6=1/3
NP — flowers 2 2/6=1/3

V — gave 2 2/2=1
Poto 1 1/1=1
Total 14
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the sum of the conditional probabilities of all rules given a certain non-terminal to
be rewritten is 1. The third column of Table 11.4 shows the PCFG probabilities of
the rules derived from the Treebank.

- Let us now consider the probability of the derivation for john gave Mary flowers.
This can be computed as the product of the probabilities in Table 11.4, that
is, 1 (S— NP VP) x 1/6 (NP — jJohn) x 1/2(VP —» NP NP) x 1(VP — gave) x 1/3
(NP — Mary) x 1/3(NP — flowers) = 1/108. Likewise, we can compute the probabil-
ity of John gave flowers to Mary: 1 x 1/6 x1/2x1x1/3x1x1/3=1/108.

What is important in these probabilistic formalisms is that the probability of a
whole (i.e. a tree) can be computed from the combined probabilities of its parts.
The problem of PCFG is its derivational independence from previous rules, since
in PCFG, rules are independent from each other. For example, if we consider a
larger Treebank, it surely contains various derivational types of prepositions: P —
to; P — for; P — in, and so forth. The probability of observing the preposition to,
however, is not equal to the probability of observing fo given that we have first
observed the verb give. But this dependency between giveand to is not captured by
a PCFG.

Several other formahsms, such as head-lexicalized probabilistic grammar
(Collins 1996; Charniak 1997) and probabilistic lexicalized tree-adjoining grammar
(Resnik 1992), have tried to capture this dependency and the DOP model (Bod
1992, 1998) is one of such models. A DOP model captures the previously men-
tioned problem dependency between different constituent nodes by a subtree that
has the two relevant words as its only lexical items. Moreover, a DOP model can

capture arbitrary fixed phrases and idiom chunks, such as to take advantage
of (Bod 2003: 26).

11.6.2 A DOP Model

There is no space to elaborate on a DOP model in detail here, but let me provide
a simple example of how a DOP model works. If we consider the example in (17a):
John gave Mary flowers, we can derive from this treebank the following subtrees:

(18) (S (NP John) (VP (V gave) (NP Mary) (NP flowers)))
(S (NP) (VP (V gave) (NP Mary) (NP flowers)))
(S (NP John) (VP (V) (NP Mary) (NP flowers)))
(S (NP John) (VP (V gave) (NP) (NP flowers)))
(S (NP John) (VP (V gave) (NP Mary) (NP)))
(S (NP) (VP (V) (NP Mary) (NP flowers)))

(S (NP) (VP (V gave) (NP) (NP flowers)))
(S (NP) (VP (V gave) (NP Mary) (NP)))
(S (NP John) (VP (V) (NP) (NP flowers)))
(S (NP John) (VP (V) (NP Mary) (NP)))
(S (NP John) (VP (V gave) (NP) (NP)))
(S (NP) (VP (V) (NP) (NP flowers)))






