MALINDO Morph: Morphological dictionary and analyser for Malay/Indonesian

Hiroki Nomoto* Hannah Choi° David Moeljadi° Francis Bond°

*Tokyo University of Foreign Studies, °Nanyang Technological University

7 May 2018 The 13th Workshop on Asian Language Resources (ALR13)

Morphological dictionaries in NLP

- Lemmatization is an important task for morphological analysis
- A good dictionary with wide coverage is crucial to the success of a robust morphological analysis, which in turn becomes the basis for higher-level tasks such as syntactic parsing.
- Open dictionaries for Japanese
 - NAIST Japanese Dictionary (IPAL)
 - UniDic
- Nothing comparable exists for Malay/Indonesian.
- So we created a morphological dictionary for Malay/Indonesian: MALINDO Morph

Organization

- Malay and Indonesian
 - Their relationship
 - Morphology
- Existing tools and their problems
- MALINDO Morph and its creation
- Ways of using MALINDO Morph
- Future work

Malay and Indonesian

- The "Malay" language (msa¹): official language of four countries in the Malay Archipelago.
- Two regional varieties:
 - ► Malay in the narrow sense (zsm¹), used in Malaysia, Brunei and Singapore
 - ▶ Indonesian (ind¹), used in Indonesia
- Many tools and resources have been independently developed in each region.
- But the languages are mutually intelligible (about 10% lexical difference (Asmah, 2001)) and share the same set of affixes.
- ⇒ A common morphological dictionary can be developed.

Malay/Indonesian Morphology

Malay/Indonesian morphology involves the use of

- Affixation
- Reduplication
- Cliticization

Affixation

- Productive: Prefixes, suffixes and circumfixes
- Non-productive: Infixes
- (1) a. Prefix batas 'limit' + $ter \rightarrow terbatas$ 'limited'
 - b. Suffix batas 'limit' + $-an \rightarrow batasan$ 'limitation'
 - c. Circumfix batas 'limit' + peN- -an

 $\rightarrow \underline{pem}batas\underline{an}$ 'delimiting'

6 / 34

Reduplication

- Productive: Full reduplication
- Semi-productive: Partial and rhythmic reduplication
- (2) a. Full reduplication kucing 'cat' $\rightarrow kucing$ 'cats'
 - b. Rhythmic reduplication (vowel and/or consonant alternation) gunung 'mountain' \rightarrow gunug-ganang 'mountain range'
 - c. Partial reduplication
 (base-initial consonant + e + base)

 mula 'to start' \rightarrow memula 'at first' (Malay)

Cliticization

- Proclitics
- Enclitics
- (3) Proclitic (before the base) a. terima 'to receive' + ku = 'I'
 - b. Enclitics (after the base)
 - buku 'book' + =ku 'me/my'
- → *bukuku* 'my book'

 $\rightarrow kuterima$ 'I receive'

Interaction of different morphological processes

Existing morphological dictionaries

- No large dictionary file is publicly available in an accessible format.
- Baldwin and Su'ad's (2006) Malay tokenizer/lemmatizer: Word-lemma-POS triples for 2,499 words.
- One can create a larger dictionary by using the data from online dictionaries.
- However, no existing dictionary contains all the kinds of morphological information that MALINDO Morph offers: affixes, clitics and reduplication types.

Existing morphological analysers

Stemmers/lemmatizers

- Identify the stem/lemma.
- Much work has been done (Baldwin and Su'ad, 2006; Adriani et al., 2007; Larasati et al., 2011; Mohamad Nizam et al., 2016).

Morphological analysers

- Also analyse the non-stem/lemma strings.
- MorphInd (Larasati et al., 2011) seems to be the most sophisticated morphological analyser.

MorphInd (Larasati et al., 2011)

- MorphInd identifies morpheme boundaries and assigns two POS tags to a token:
 - 'Lemma tag' (POS tag for the lemma)
 - 'Morphological tag' (POS tag for the entire token)
- (4) a. Input: mengirim 'to deliver'
 - b. Output: meN+kirim<v>_VSA
 - <v>: lemma tag for verbs
 - <u>_VSA</u>: morphological tag indicating that the entire token is a singular active verb

A common misunderstanding among NLP researchers: Circumfix \equiv prefix + suffix

- Circumfixes are incorrectly thought of as a combination of a prefix and a suffix.
- MorphIndo does not specify whether the non-lemma strings are a prefix, suffix or circumfix.
- (5) a. Input: pengiriman 'delivery' (= kirim + circumfix peN-an)
 - b. Output: <u>peN+kirim<v>+an_NSD</u>

 —Not obvious whether <u>peN</u> and <u>an</u> are a combination of two morphemes (prefix <u>peN-</u> and suffix -an) or a single morpheme (circumfix <u>peN--an</u>)...

Circumfix or "prefix + suffix"?

- The correct identification of circumfixes presents a major challenge to morphological analysis in Malay/Indonesian.
- A correct circumfix cannot be identified by just looking at the two strings at the left and right edges of a token.
- (6) <u>berakhiran</u> 'suffixed' NOTakhir + circumfix <u>ber--an</u> BUT [akhir + suffix <u>-an</u>] + prefix <u>ber-</u>

MALINDO Morph and its format

- Available at https://github.com/matbahasa/MALINDO_Morph
- Licensed under a CC BY 4.0 license.
- Version 20180418 has 232,516 lines (case-sensitive).
- Each line is made up of:
 - ID
 - ▶ Root
 - Surface form
 - Prefix(es), proclitic
 - Suffix(es), enclitic(s)
 - Circumfix(es)
 - Reduplication type
- Also include the analyser: morph_analyzer.py

Example: *perlu* 'necessary' and its derivatives

Root	Surface form	Prefix	Suffix	Circumfix	Reduplication
perlu	perlu	0	0	0	0
perlu	seperlunya	0	0	senya	0
perlu	memerlukan	meN-	-kan	0	0
perlu	perlu-	meN-	-kan	0	R-full
	memerlukan				
perlu	keperluan	0	0	kean	0

Two steps in building MALINDO Morph

• Core dictionary Entries from the authoritative dictionaries in Malaysia and Indonesia (Kamus Dewan⁴ (KD) and Kamus Besar Bahasa Indonesia⁵ (KBBI))

we would like to thank them for their cooperation

2 Expanded dictionary
Other tokens found in

Other tokens found in the reclassified version of the Leipzig Corpora Collection for Malay and Indonesian (LCC; Goldhahn et al., 2012; Nomoto et al., under review)

Sizes of the MALINDO Morph dictionaries (unit: line)

Dictionary	Checked	Unchecked	Total
Core	84,404	0	84,404
Expanded	47,400	100,712	148,112
Total	131,804	100,712	232,516

The morphological analysis of the core dictionary

- The morphological analyses were conducted using Microsoft Excel functions.
- The results were manually checked by Japanese undergraduate students of Malay/Indonesian, Indonesian research students and the first and second authors of the present paper.
- When the analyses provided by KD and KBBI differed from each other or were not precise as linguistic analyses, we adopted our own analyses.
- Hence, our core dictionary is not identical to either KD or KBBI.

Expanded dictionary

- Tokens that are not in the core dictionary were taken from the reclassified version of LCC.
- 300K (= 300K sentences) subset files \times 16 (Malay 3, Indonesian 13)
- 1,005,007 word types (case-sensitive)
- Genuine Malay/Indonesian words, proper names, abbreviations, spelling variants/errors, foreign words and non-alphabets.
- Only tokens with frequency greater than ten in one of the sixteen subset files were further processed.

Frequent words in LCC

Total: 282,186 words

- English words: $57,633 \rightarrow \text{not}$ included in MALINDO Morph
- Non-alphabets: 76,638 \rightarrow not included in MALINDO Morph
- The others: $147,915 \rightarrow$ analysed using the morphological analyser and checked by hand (ongoing)

Other items in the expanded dictionary

- Words in the core dictionary that can also be analysed as involving an enclitic.
- \bullet Handled manually \to added to the "checked" category of the expanded dictionary.

(7) penanya

- a. Core dictionary
 <u>penanya</u> = Root tanya 'ask' + prefix peN-('questioner')
- Expanded dictionary
 penanya = Root pena 'pen' + enclitic =nya 'his/her'
 ('his/her pen')

Limitations

- MALINDO Morph only targets productive native affixes and reduplication, but not borrowed affixes (with a few exceptions).
- No distinction is made between the suffix -nya and the enclitic =nya.

Morphological analyser: Preparation

- rootlist: A list of roots in the core dictionary (core-dic).
- hyp-dic: A hypothetical dictionary consisting of the basic and di-passive forms corresponding to the meN- verbs in core-dic.
 - The forms in hyp-dic were created automatically and are merely hypothetical.
- They were added to the expanded dictionary (exp-dic) only if they were found to actually be used in the corpus.

Morphological analyser: The algorithm I

- ullet Input W
- An 'analysis' is a list of the format ⟨affix candidate, root, remaining string before root, remaining string after root, reduplication⟩.
- Handle non-alphabets.
- Handle English words.
- Mandle words present in core-dic/hyp-dic.
- Strip W/w of clitic strings. (w: W in lower case)
- Generate candidate sets $Cand_c$, $Cand_p$ and $Cand_s$, where $Cand_a$ is a set of candidate analyses for token w based on affix/clitic type a
 - $\in \{c(\text{ircumfix}), p(\text{refix/proclitic}), s(\text{uffix/enclitic})\}.$

Morphological analyser: The algorithm II

- Search $Cand_c \times Cand_p \times Cand_s$ for members whose elements are mutually compatible.
- **②** Return $\langle root_c, w, p$ -, $-s, c_1$ $-c_2, red_c \rangle$ for every such member.

Example: sedianya 'actually' I

Suppose the word were not in core-dic.

Step 5: Candidate generation

$$\begin{split} Cand_c &= \left\{ \begin{array}{l} \langle \emptyset, \mathrm{sedia}, \emptyset, \mathrm{nya}, \emptyset \rangle, \langle \emptyset, \mathrm{dia}, \mathrm{se}, \mathrm{nya}, \emptyset \rangle, \\ \langle \mathrm{se--nya}, \mathrm{dia}, \emptyset, \emptyset, \emptyset \rangle \end{array} \right\} \\ Cand_p &= \left\{ \begin{array}{l} \langle \emptyset, \mathrm{sedia}, \emptyset, \mathrm{nya}, \emptyset \rangle, \langle \emptyset, \mathrm{dia}, \mathrm{se}, \mathrm{nya}, \emptyset \rangle, \\ \langle \mathrm{se-}, \mathrm{dia}, \emptyset, \mathrm{nya}, \emptyset \rangle \end{array} \right\} \\ Cand_s &= \left\{ \begin{array}{l} \langle \emptyset, \mathrm{sedia}, \emptyset, \mathrm{nya}, \emptyset \rangle, \langle \emptyset, \mathrm{dia}, \mathrm{se}, \mathrm{nya}, \emptyset \rangle, \\ \langle \mathrm{-nya}, \mathrm{sedia}, \emptyset, \emptyset, \emptyset \rangle, \langle \mathrm{-nya}, \mathrm{dia}, \mathrm{se}, \emptyset, \emptyset \rangle \end{array} \right\} \end{split}$$

Example: *sedianya* 'actually' II

Step 6: Search $Cand_c \times Cand_p \times Cand_s$ for mutually compatible members

- $\begin{pmatrix} \langle \emptyset, \operatorname{sedia}, \emptyset, \operatorname{nya}, \emptyset \rangle, \langle \emptyset, \operatorname{sedia}, \emptyset, \operatorname{nya}, \emptyset \rangle, \\ \langle -\operatorname{nya}, \operatorname{sedia}, \emptyset, \emptyset, \emptyset \rangle \end{pmatrix}$ $\begin{pmatrix} \langle \operatorname{se--nya}, \operatorname{dia}, \emptyset, \emptyset, \emptyset \rangle, \langle \emptyset, \operatorname{dia}, \operatorname{se}, \operatorname{nya}, \emptyset \rangle, \\ \langle \emptyset, \operatorname{dia}, \operatorname{se}, \operatorname{nya}, \emptyset \rangle \end{pmatrix}$

Example: sedianya 'actually' III

Step 7: Output

- \bullet \langle sedia, sedianya, \emptyset , -nya, \emptyset \rangle
- \bigcirc \langle dia, sedianya, \emptyset , \emptyset , se--nya, \emptyset \rangle

(The second output will be rejected by human checking.)

Conclusions

- With MALINDO Morph, stemming/lemmatizing frequent words in Malay/Indonesian will become a simple dictionary lookup with an additional disambiguation process for morphologically ambiguous words.
- The development of stemmers, lemmatizers and root identifiers should then focus on infrequent words.
- MALINDO Morph provides useful information for other tasks.
 E.g., POSs can be partly predicted from the outermost affix of a word:
 - ▶ meN- \rightarrow verb (active)
 - ightharpoonup per- -an \rightarrow noun
 - ▶ se--nya \rightarrow adverb, ...

Future work

In the future, the MALINDO Morph dictionary can be enriched by adding more linguistic information.

- Distinction between the suffix -nya (forming adverbials, nominalizing verbs and adjectives, occurring in exclamatives) and the enclitic =nya (3rd person pronoun, definite marker)
- Information about the variety, i.e. Malay, Indonesian and their dialects
- POSs
- Frequency of forms and derivations

References I

- KD⁴. 2005. *Kamus Dewan*. Kuala Lumpur: Dewan Bahasa dan Pustaka, 4th edition.
- KBBI⁵. 2016. *Kamus Besar Bahasa Indonesia*. Jakarta: Badan Pengembangan dan Pembinaan Bahasa, 5th edition.
- Adriani, Mirna, Jelita Asian, Bobby Nazief, S. M.M. Tahaghoghi, and Hugh E. Williams. 2007. Stemming Indonesian: A confix-stripping approach. *ACM Transactions on Asian Language Information Processing (TALIP)* 6:1–33.
- Asmah Haji Omar. 2001. The Malay language in Malaysia and Indonesia: From lingua franca to national language. *The Aseanists ASIA* II.
- Baldwin, Timothy, and Su'ad Awab. 2006. Open source corpus analysis tools for Malay. In *Proceedings, the 5th International Conference on Language Resources and Evaluation (LREC2006)*, 2212–2215.

References II

- Goldhahn, Dirk, Thomas Eckart, and Uwe Quasthoff. 2012. Building large monolingual dictionaries at the Leipzig Corpora Collection: From 100 to 200 languages. In *Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)*.
- Larasati, Septina Dian, Vladislav Kuboň, and Daniel Zeman. 2011. Indonesian morphology tool (MorphInd): Towards an Indonesian corpus. In *Systems and Frameworks for Computational Morphology*, ed. Cerstin Mahlow and Michael Piotrowski, 119–129. Verlag: Springer.
- Mohamad Nizam Kassim, Mohd Aizaini Maarof, Anazida Zainal, and Amirudin Abdul Wahab. 2016. Word stemming challenges in Malay texts: A literature review. In 2016 4th International Conference on Information and Communication Technology (ICoICT), 1–6.

References III

Nomoto, Hiroki, Shiro Akasegawa, and Asako Shiohara. under review. Reclassification of the Leipzig Corpora Collection for Malay and Indonesian.