カイニ乗検定

竹内理・水本篤(2014).『外国語教育研究ハンドブック』松柏社 (pp.147-160) より

Q 「ESL コースで学ぶ学習者の母語を調べてみたところ、表1のようになったんだ。中 国人が一番多いんじゃないかな」

表 1

	日本語	タイ語	中国語	合計
人数	18	24	48	90

このように、<u>名義尺度</u>で分類された<u>人数や回数の頻度の差</u>を統計的に検証する場合は、カ イ二乗検定を使う。

● カイニ乗検定の適用条件

① データが名義尺度(categorical data) であるか

 カイ二乗検定は、名義尺度ごとにカテゴリーで分類されたカテゴリーデータ (categorical data)に対する検定。

② データが累積の頻度であるか

- %などのデータには使用できない。
- 比率データは実際の人数や頻度に戻してから使わなければならない。

③ データが独立しているか

ある1つ(1人)のサンプルから得られるデータは、1度しかカウントされてはいけない

表 3

表 2 2x2	の分割表
---------	------

	質問あり	質問なし
女子	15	7
男子	8	16

	- /•				
	質問回数				
	0~5回	6~10 回	11 回以上		
女子	15	11	8		
男子	10	9	7		

2x3 分割表の例

④ 期待値が5以上であるか

- カイ二乗検定は、比較されるすべてのグループで、同じ度数が観測されると仮定した場合の値(期待値)と、観察された度数(実測値)がどの程度異なっているかを調べる検定。
- このため、いずれかのグループの期待値が5未満になると、結果が不正確になる。

このような場合は、より多くのデータを収集して期待値が5以上になるようにする
 か、フィッシャーの正確(直接)確率検定(Fisher's exact test を使う)。

⑤ どのような分割表になるデータか

- 自由度が1だと、カイ二乗検定では、第1種の誤り(実際には差がないのに差があると主張してしまう)が起こる危険性がある。(表2などが例)
- 自由度が1の場合は、「イェーツの補正」と呼ばれる連続性の補正を用いる。
- ただし、フィッシャーの正確確率検定を用いれば、正確な p 値が得られる。

適合度検定と独立性の検定

カテゴリー変数が1の場合→適合度検定(表1)
 2以上の場合→独立性の検定(表2)

残差分析と多重比較

- カイ二乗検定では、全体として差がある事は示してくれるが、ここのどのカテゴリー(セル)に差があるのかまでは示してくれない。
- どのセルが期待値よりも統計的に優位に大きい(小さい)かを調べるには、残差分析(residual analysis)を行う。
- 残差とは、実際の値(観測値)がモデルの値(期待値)からどのくらいかけ離れて いるかを示した値。

● 効果量

- カイ二乗検定で効果量を報告する際には、主に相関係数の一種であるファイ(φ)
 係数、またはクラマーの V (Cramer's V) という指標を用いる。
- 自由度は2以上の場合はクラマーのVを使用する。自由度が2以上の時にφ係数を 使用すると、効果量が0(最低値)であるはずの場合に0より高い値になってしま う事がある。

Chapter 8: Chi-square

8.1 Summarizing and Visualizing Data 8.11 Summary Tables for Goodness-of-Fit Data

- カイ二乗適合度検定
- ▶ スペイン語話者(L1 と L 2)
- ▶ 従属変数:動詞の選択(ser, ester, or both)
- ▶ 独立変数: Spanish L1 speaker

Portuguese L1 speaker

Portuguese L1 learner of Spanish L2

- ▶ ここで扱うのは Spanish L1 のデータについてのみ。
- インターネットの SPSS データセットのページに行って、GeeslinGF3_5.sav という ファイルをダウンロードする。

- ◆ 頻度表を作る
- R コマンダーで GeeslinGF3_5.sav ファイルを読み込む。
- 1. Data > import data > from SPSS data set
- 2. geeslin3 という名前で保存。
- 3. Statistics > Summaries > Frequency Distributions
- 4. item3 で ok

結果↓ (頻度とパーセンテージ)

```
counts:
item3
Estar Ser Both
13 4 2
percentages:
item3
Estar Ser Both
68.42 21.05 10.53
```

● R console でも以下の R コードを使うことで、同じ結果を出すことが可能

table(geeslin3\$item3)

100*table(geeslin3\$item3)/sum(table(geeslin3\$item3))

> tabl	e(gees	lin3\$i	tem3)	
Estar	Ser	Both		
13	4	2		
> 100*	table(geesli	n3\$item3)	<pre>/sum(table(geeslin3\$item3))</pre>
Est	ar	Ser	Both	
68.421	05 21.	05263	10.52632	
>				

8.1.2 Summaries of Group Comparison Data (Crosstabs)

- ▶ 変数が1つ以上の場合
 - Number of languages
 - Language dominance
- インターネットのSSPデータセットのページに行って、BEQ.Dominanceというファ イルをダウンロード

- <u>Pandey2000</u>
- <u>Torres</u>
- <u>Yates2003</u>
- BeautifulRose
- <u>BEQ.Context</u>
 <u>BEQ.Dominance</u>
- <u>BEQ.Doi</u>
- <u>BEQ</u>
- <u>BEQ.Swear</u>
 <u>ClassTime</u>
- <u>DeKeyser2000</u>
- <u>EllisYuan</u>

-

- ◆ Two-Way-Table を作る
- Rコマンダーで BEQ.Dominance ファイルを読み込む。
- 1. Data > import data > from SPSS data set
- 2. beqDom という名前で保存。
- 3. Statistics > Contingency tables > Two-Way Table

7 Two-Way Table	
Row variable (pick one) Colu CatDominance Image: CatDominance NumberOfLang Num sex Image: Sex	mn variable (pick one) ominance berOfLang
Compute Percentages	You can choose to see percentages along with counts here.
Percentages of total O	
Hypothesis Tests Chi-square test of independence	
Components of chi-square statistic Print expected frequencies	The way to conduct the chi- square test of group independence is just to leave
Fisher's exact test	this box checked.
	Help 1

4. 結果↓ (Table8.1)

Frequency table: catdominance numberoflang YES NO YESPLUS Two 94 26 17 Three 159 26 83 Four 148 23 110 Five 157 30 163 Pearson's Chi-squared test data: .Table X-squared = 59.581, df = 6, p-value = 5.476e-11

R console でも以下のRコードを使うことで、同じ結果を出すことが可能
 .Table <- xtabs(~numberoflang+catdominance, data=beqDom)
 .Table

結果↓

```
    Table8.1 のような結果がすでにあって、そこから 2×2 の表を作りたいとき
TM<-matrix(c(12,0,18,16),nrow=2,ncol=2,byrow=T,
dimnames=list(c("Relative Clauses", "No +RCs"), c("Method A",
"Method B")))
```

ТМ

結果↓

> TM<-		
<pre>matrix(c(12,0,18,</pre>	,16),nrow=2	,ncol=2,by
<pre>row=T, dimnames=1</pre>	list(c("Rel	ative
Clauses", "No +RC	Cs"), c("Me	thod A",
"Method B")))		
> TM		
	Method A M	ethod B
Relative Clauses	12	0
No +RCs	18	16

♦ Multi-Way Table をつくる

- > 変数が3つ以上の場合
- 1. Statistics > Contingency tables > Multi-Way Table

7 Multi-Way Table		X
Row variable (pick one) CatDominance NumberOfLang sex Compute Percentages Compute Percentages Column percentages Column percentages Subset expression <all cases="" valid=""> OK Cance</all>	Column variable (pick one) CatDominance NumberOfLang sex	Control variable(s) (pick one or more) CatDominance NumberOfLang Sex

Figure 8.3 How to make a crosstab with three or more categorical variables in R.

◆ 性別ごとの表ができる。

Output Frequency table: , , sex = F catdominance numberoflang YES NO YESPLUS Two 66 19 14 Three 113 18 61 Four 95 18 92 Five 99 23 112 , , sex = M catdominance numberoflang YES NO YESPLUS Two 28 7 З Three 46 8 22 Four 53 5 18 Five 58 7 51

◆ R コンソールでは

.Table <- xtabs(~numberoflang+catdominance+sex, data=beqDom)

.Table

```
> .Table <- xtabs(~numberoflang+catdominance+sex, data=beqDom)</pre>
> .Table
, , sex = F
           catdominance
numberoflang YES NO YESPLUS
      Two
             66 19
                         14
      Three 113 18
                         61
      Four
             95 18
                         92
      Five
             99 23
                        112
, sex = M
           catdominance
numberoflang YES NO YESPLUS
      Two
             28
                - 7
                         3
      Three 46 8
                         22
      Four
             53 5
                         18
      Five
             58 7
                         51
```

◆ 他にもパーセンテージを出せる便利なコードがある
 rowPercents(.Table) # Row Percentages

colPercents(.Table) # Column Percentages

totPercents(.Table) # Percentage of Total; this only works with two-way tables

<pre>> rowPercents(.Table)</pre>)
, , sex = F	
catdomina numberoflang YES I Two 66.7 19 Three 58.9 9 Four 46.3 8 Five 42 3 9	ance NO YESPLUS Total Count .2 14.1 100.0 99 .4 31.8 100.1 192 .8 44.9 100.0 205 8 47.9 100.0 234
, , sex = M	
catdomin	ance
numberoflang YES Two 73.7 18 Three 60.5 10 Four 69.7 6 Five 50.0 6	NO YESPLUS Total Count .4 7.9 100.0 38 .5 28.9 99.9 76 .6 23.7 100.0 76 .0 44.0 100.0 116
<pre>> colPercents(.Ta , , sex = F</pre>	ble) # Column Percentages
catdo	minance
numberoflang YE	S NO YESPLUS
Two 17.	7 24.4 5.0
Three 30.	3 23.1 21.9
Four 25.	5 23.1 33.0
Total 100	0 100 1 100 0
Count 373.	0 78.0 279.0

, , sex = M

(catdominance			
numberoflang	YES	NO	YESPLUS	
Two	15.1	25.9	3.2	
Three	24.9	29.6	23.4	
Four	28.6	18.5	19.1	
Five	31.4	25.9	54.3	
Total	100.0	99.9	100.0	
Count	185.0	27.0	94.0	

> tot	Percent	ts(.Tab	le) #	Percentage	of	Total;	this
only	works w	vith tw	o-way	tables			
	tab	Total					
<na></na>	6.4	13.2					
<na></na>	10.9	25.9					
<na></na>	9.2	27.1					
<na></na>	9.6	33.8					
<na></na>	1.8	13.2					
<na></na>	1.7	25.9					
<na></na>	1.7	27.1					
<na></na>	2.2	33.8					
<na></na>	1.4	13.2					
<na></na>	5.9	25.9					
<na></na>	8.9	27.1					
<na></na>	10.8	33.8					
<na></na>	2.7	13.2					
<na></na>	4.4	25.9					
<na></na>	5.1	27.1					
<na></na>	5.6	33.8					
<na></na>	0.7	13.2					
<na></na>	0.8	25.9					
<na></na>	0.5	27.1					
<na></na>	0.7	33.8					
<na></na>	0.3	13.2					
<na></na>	2.1	25.9					
<na></na>	1.7	27.1					
<na></na>	4.9	33.8					
Total	100.0	600.0					
>							

8.1.3 Visualizing Categorical Data

Bar plots の作り方を教えるが、私(author)は Bar plots はオススメしない。

8.1.4 Bar plots in R

Commander でも作れるが、より sophisticated な Bar plots を作りたければ、R code を 使う必要がある。まずは geeslin3 のデータを使って、commander の操作から。

Bar plot of ONE categorical variable

① Data set を becDom から geeslin3 に切り替える。(青い文字のところ)

	X R Con
File Edit Data Statistics Gr	aphs Models Distributions
📿 Data set: 🞹 geeslin	B Z Edit data set
R Script R Markdown	
<pre>geeslin3 <- read.spss("/U use.value.labels=TRUE, colnames(geeslin3) <- tol beqDom <- read.spss("/Use use.value.labels=TRUE, colnames(beqDom) <- tolow</pre>	sers/yukatakahashi/Desk max.value.labels=Inf, t ower(colnames(geeslin3) rs/yukatakahashi/Desktc max.value.labels=Inf, t er(colnames(beoDom))

② Graphs > Bar graphs > 好きな変数(item3)を選ぶ

結果↓

Figure 8.4 Barplot of ONE category variable in R from Geeslin and Guijarro-Fuentes (2006) data

◆ R Console では

barplot(table(geeslin3\$item3), xlab="item3", ylab="frequency")

Bar plot of TWO categorical variables

① Data set を beqDom に切り替える。(青い文字のところ)

②Graphs > Bar graph > numbeoflang > ok

◆ R console では

install.packages("epitools")

library(epitools) colors.plot(TRUE) #パレットの上で左クリック。右クリックでエスケープ

attach(beqDom) barplot(tapply(catdominance, list(catdominance, numberoflang), length), col=c("grey83", "grey53", "grey23"), beside=T, ylab="number of responses", xlab="number of languages") **locator()** #barplotの上で左クリック。右クリックでエスケープ。

```
legend(.827,158,legend=c("L1 dominant", "LX dominant", "L1+more
dominant"), fill=c("grey83", "grey53", "grey23"))
```

◆ Raw count dataの代わりにSummary dataがある場合

```
TM<-matrix(c(12,0,18,16),nrow=2,ncol=2,byrow=T,
dimnames=list(c("Relative Clauses", "No +RCs"), c("Method A",
"Method B")))
```

barplot(TM,beside=T, main="Teaching Method and Production of Relative Clauses")

legend(3.24,14.1,c("Rel.clauses", "No RCs"),fill=c("grey22", "grey83"))

8.1.6 Association Plots

```
① install.packages("vcd") で、パッケージをダウンロードする。
```

```
② そして、データを contingency table の形にする。
```

```
library(vcd)
```

(DOM=structable(catdominance ~ numberoflang,data=beqDom))

> (DOM=struct	able(catdominance catdominance YES	~ NO	numberofla YESPLUS	ng,data=beqDom))
numberoflang				
Тwo	94	26	17	
Three	159	26	83	
Four	148	23	110	
Five	157	30	163	

③ Association plot をつくる。

assoc(DOM, gp=shading_Friendly, labeling_args=list(set_varnames= c(CatDominance ="L1 Dominant", NumberOfLang ="Number of Lges Known")))

・3つめのvariables (sex)を含めてAssociation plot をつくる方法

DOM3=structable(catdominance~numberoflang+sex,data=beqDom)

assoc(DOM3)

Mosaic plot with TWO variables (Dewaele and Pavlenko data)

①Mozaic plot をつくるコマンド

mosaic(DOM, gp=shading_Friendly, (ここで切る)

labeling_args=list(set_varnames= c(CatDominance="L1 Dominant", NumberOfLangs="Number of Lges Known")))

- ◆ 点線は期待値との有意な差がなかったところ。
- ◆ 青は期待値より有意に頻度が高かったところ
- ◆ 赤は期待値より有意に頻度が低かったところ

Mozaic plot with THREE variables (Mackey and Silver data).

① Mackey and Silverのデータをダウンロードする。

- LeowMorganShort
- Lyster.Oral
- Lyster.Written
- MackeySilver2005
- <u>Motivation</u>

<u>.</u>

- <u>MunroDerwingMorton</u>
- <u>Murphy.RepeatedMeasures</u>
- Obarow.Original

②Rコマンダーでデータを読み込み、Mackeyで保存。

③Rコンソールで以下のコマンドでテーブルを作り、

(DEV=structable(developdelpost~group+pretest,data=Mackey))

group	pretest		
Control	1	1	1
	2	1	3
	3	2	3
	4	0	1
Experimental	1	4	2
	2	5	1
	3	1	1
	4	0	0

④以下のコマンドでmosaic plotを作る。

mosaic(DEV, gp=shading_Friendly, labeling_args=list(set_varnames= c(developdelpost="delayed posttest level", group="Group", pretest="Pretest level")))

◆ 点線は期待値との有意な差がなかったところ。

◆ 普通の線は期待値より有意に頻度が異なったところ

◆ タイタニックの生存者/死亡者データ(age, sex, class)

library(vcd)

doubledecker(Survived~Class+Sex+Age, data=Titanic)

8.3 One- Way Goodness-Of-Fit Test

動詞(ser, ester, both)のpreferenceに違いがあるか。

①GeeslinGF3_5.sav fileを読み込み、geeslin3という名前で保存。

② Statistics > Summaries > Frequency distributions

③ Item3を選択し、Chi-square goodnesss-of-fit-testにチェックを入れる。

7% Frequency Distributions		
Variables (pick one or more)		
Item3	7 Goodness-of-Fit Test	- IX
Item4 Item5 Item15	Factor levels: Estar Ser Hypothesized probabilities: 1/3 1/3	Both 1/3
Chi-square goodness-of-fit test (for one variable only) OK Cancel Help	OK Cancel	
OK Cancel Help	OK Cancel	

Figure 8.10 Dialogue boxes for goodness-of-fit chi-square test.

```
counts:
item3
Estar
       Ser Both
   13
         4
                2
percentages:
item3
Estar
       Ser Both
68.42 21.05 10.53
        Chi-squared test for given
        probabilities
data: .Table
X-squared = 10.842, df = 2,
p - value = 0.004422
```

- ◆ 全て同じ確率(1/3)という帰無仮説は棄却される(p=0.0044)
- ◆ カイ二乗検定は、どのitemが好まれるかまでは教えてくれない。しかし、このケースでは頻度を見るとestarが好まれている事がわかる。

♦ Rコマンダーでは:

chisq.test(table(geeslin3\$item3), correct=false)

> chisq.test(table(geeslin3\$item3), correct=false)

Chi-squared test for given probabilities

```
data: table(geeslin3$item3)
X-squared = 10.842, df = 2, p-value = 0.004422
```

◆ もし、全て同じ確率ではなく、ser(40%), ester (40%), both(20%)という確率で検定したい場合は、以下のコードを使う。

prob=c(.4,.4,.2)

chisq.test(table(geeslin3\$item3),correct=false,p=prob)

```
> prob=c(.4,.4,.2)
> chisq.test(table(geeslin3$item3),correct=FALSE,p=prob)
Warning in chisq.test(table(geeslin3$item3), correct = FALSE, p = prob) :
    Chi-squared approximation may be incorrect
```

Chi-squared test for given probabilities

data: table(geeslin3\$item3)
X-squared = 6.3947, df = 2, p-value = 0.04087

8.4 Two-Way Group-Independence Test

- ◆ 独立性の検定は、二つの変数の間に何も関連がない事を帰無仮説にします。
- ◆ 話す言語の数によるlanguage dominanceに影響があるかを見る。

①コマンダーのData setをbeqDomデータに切り替える。

③ Statistics > contingency tables > Two-way-tables

Row variable (pick one) Column variable CatDominance CatDomina NumberOfLang NumberOfLang sex V Compute Percentages Compute Percentages	riable (pick one)
Column percentages C Percentages of total C No percentages • Hypothesis Tests Chi-square test of independence C Components of chi-square statistic	Under hypothesis tests, leave the default "Chi-square test" ticked for the normal chi-square test; choose "Components" if you want a table of residuals; choose "expected frequencies" if you want to know this; and choose "Fisher's exact test" if you have exactly two levels in both variables and if you have a problem with small sample size.
Fisher's exact test Subset expression <all cases="" valid=""> OK Cancel</all>	Help

Figure 8.12 How to perform a two-way group-independence chi-square in R.

```
Frequency table:
            catdominance
numberoflang YES
                  NO YESPLUS
              94
       Two
                  26
                          17
       Three 159
                  26
                          83
       Four 148
                  23
                         110
       Five 157 30
                         163
       Pearson's Chi-squared test
data:
      . Table
X-squared = 59.581, df = 6, p-value = 5.476e-11
```

◆ カイ二乗値=(59.6)でとても大きい、p=.00000000055でとても小さい。

→帰無仮説は棄却される。話す言語の数と、language dominanceには関連がある。

注:今回は大きいデータなので、warningはでてこないが、データの数が少ないと、コマン ダーのメッセージボックスに以下のような警告が出る。

Figure 8.13 R Commander's warning about low expected frequencies.

◆ Rコンソールでは:

chisq.test(xtabs(~catdominance+numberoflang, data=beqDom), correct=FALSE)

> chisq.test(xtabs(~catdominance+numberoflang, data=beqDom), correct=FALSE)
Pearson's Chi-squared test
data: xtabs(~catdominance + numberoflang, data = beqDom)

X-squared = 59.581, df = 6, p-value = 5.476e-11

◆ 期待値が1以下のものがある場合に警告が出る。

→1以下のものがいくつあるか見たい場合

.Test= chisq.test(xtabs(~catdominance + numberoflang,data= beqDom), correct=FALSE)

.Test\$expected

> .Test= chisq.test(xtabs(~catdominance + numberoflang,data= beqDom), correct=FALSE)

```
>.Test$expected
```

r	numberofla	ang		
catdominance	Тwo	Three	Four	Five
YES	73.78958	144.34749	151.34942	188.51351
NO	13.88514	27.16216	28.47973	35.47297
YESPLUS	49.32529	96.49035	101.17085	126.01351

◆ effect sizeとlikelihood ratio testの結果を求めるとき

library(vcd)

summary(assocstats(xtabs(~catdominance+numberoflang, data=beqDom)))

> summary(assocstats(xtabs(~catdominance+numberoflang, data=beqDom)))

```
Call: xtabs(formula = ~catdominance + numberoflang, data = beqDom)

Number of cases in table: 1036

Number of factors: 2

Test for independence of all factors:

Chisq = 59.58, df = 6, p-value = 5.476e-11

X^2 df P(> X^2)

Likelihood Ratio 63.742 6 7.7904e-12

Pearson 59.581 6 5.4760e-11

Phi-Coefficient : NA

Contingency Coeff.: 0.233

Cramer's V : 0.17
```

◆ linear-by-linear association test (線形関連検定)

library(coin)

independence_test(catdominance~numberoflang,data=beqDom,tes tstat="quad") > independence_test(catdominance~numberoflang,data=beqDom,teststat="quad")

Asymptotic General Independence Test

data: catdominance by numberoflang (Two, Three, Four, Five) chi-squared = 59.523, df = 6, p-value = 5.625e-11